Table of Contents

Upgrade to PAN-OS 8.0
- Upgrade/Downgrade Considerations ... 7
- Upgrade the Firewall to PAN-OS 8.0 .. 9
- Determine the Upgrade Path to PAN-OS 8.0 .. 19
- Upgrade Firewalls Using Panorama ... 19
- Upgrade a Standalone Firewall to PAN-OS 8.0 .. 20
- Upgrade an HA Firewall Pair to PAN-OS 8.0 ... 25
- Downgrade from PAN-OS 8.0 .. 27
- Downgrade a Firewall to a Previous Maintenance Release 31
- Downgrade a Firewall to a Previous Feature Release 32
- Downgrade a Windows Agent from PAN-OS 8.0 ... 32

Management Features
- PA-7000 Series Firewall Log Forwarding to Panorama 35
- NetFlow Support for PA-7000 Series Firewalls .. 37
- Action-Oriented Log Forwarding using HTTP ... 41
- Selective Log Forwarding Based on Log Attributes .. 42
- Admin-Level Commit and Revert .. 44
- Extended SNMP Support .. 45

Panorama Features
- Traps Log Ingestion on Panorama ... 35
- Extended Support for Multiple Panorama Interfaces 41
- Streamlined Deployment of Software and Content Updates from Panorama ... 45
- Logging Enhancements on the Panorama Virtual Appliance 48
- Direct Query of PA-7000 Series Firewalls from Panorama 50

Content Inspection Features
- Credential Phishing Prevention .. 36
- Telemetry and Threat Intelligence Sharing ... 39
- Palo Alto Networks Malicious IP Address Feeds .. 41
- Enhanced Coverage for Command and Control (C2) Traffic 44
- Data Filtering Support for Data Loss Prevention (DLP) Solutions 48
 - First Look at New and Updated Data Filtering Options 48
 - Align Data Filtering with a DLP Solution ... 51
- External Dynamic List Enhancements ... 53
- New Scheduling Options for Application and Threat Content Updates 56
- Five-Minute Updates for PAN-DB Malware and Phishing URL Categories 57
- Globally Unique Threat IDs ... 57
 - Learn More About Threat Signatures using Threat IDs 59
 - New Threat Categories and How to Use Them 61
- Predefined File Blocking Profiles ... 63
- GPRS Tunneling Protocol (GTP) Security .. 65

WildFire Features
- WildFire Phishing Verdict ... 66

<p>| TABLE OF CONTENTS | iii |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Features..</td>
<td>109</td>
</tr>
<tr>
<td>SAML 2.0 Authentication..</td>
<td>111</td>
</tr>
<tr>
<td>Authentication Policy and Multi-Factor Authentication.....................</td>
<td>113</td>
</tr>
<tr>
<td>TACACS+ User Account Management..</td>
<td>117</td>
</tr>
<tr>
<td>Authentication Using Custom Certificates..</td>
<td>119</td>
</tr>
<tr>
<td>Deploy Custom Certificates..</td>
<td>119</td>
</tr>
<tr>
<td>Deploy Custom Certificates for Panorama HA.....................................</td>
<td>120</td>
</tr>
<tr>
<td>Deploy a Custom Certificate on Windows User-ID Agent.....................</td>
<td>121</td>
</tr>
<tr>
<td>Deploy a Custom Certificate on the Terminal Services Agent................</td>
<td>121</td>
</tr>
<tr>
<td>Authentication for External Dynamic Lists.......................................</td>
<td>123</td>
</tr>
<tr>
<td>User-ID Features..</td>
<td>125</td>
</tr>
<tr>
<td>Panorama and Log Collectors as User-ID Redistribution Points...............</td>
<td>127</td>
</tr>
<tr>
<td>Centralized Deployment and Management of User-ID and TS Agents..........</td>
<td>130</td>
</tr>
<tr>
<td>User Groups Capacity Increase..</td>
<td>131</td>
</tr>
<tr>
<td>User-ID Syslog Monitoring Enhancements..</td>
<td>132</td>
</tr>
<tr>
<td>Group-Based Reporting in Panorama...</td>
<td>134</td>
</tr>
<tr>
<td>Filter Logs by Group on Panorama..</td>
<td>134</td>
</tr>
<tr>
<td>Configure a Group Activity Report on Panorama.................................</td>
<td>136</td>
</tr>
<tr>
<td>App-ID Features..</td>
<td>139</td>
</tr>
<tr>
<td>SaaS Application Visibility for User Groups......................................</td>
<td>141</td>
</tr>
<tr>
<td>SaaS Application Usage PDF Report..</td>
<td>141</td>
</tr>
<tr>
<td>SaaS Visibility Enhancements in the ACC...</td>
<td>142</td>
</tr>
<tr>
<td>Decryption Features...</td>
<td>145</td>
</tr>
<tr>
<td>Management for Certificates Excluded from Decryption......................</td>
<td>147</td>
</tr>
<tr>
<td>Perfect Forward Secrecy (PFS) for Inbound SSL Sessions......................</td>
<td>149</td>
</tr>
<tr>
<td>Virtualization Features...</td>
<td>151</td>
</tr>
<tr>
<td>Seamless VM-Series Model Upgrade..</td>
<td>153</td>
</tr>
<tr>
<td>CloudWatch Integration for VM-Series Firewalls on AWS.....................</td>
<td>154</td>
</tr>
<tr>
<td>Support for NSX Security Tags on the VM-Series Firewall for NSX..........</td>
<td>156</td>
</tr>
<tr>
<td>VM-Series Firewall Performance Enhancements.....................................</td>
<td>157</td>
</tr>
<tr>
<td>VM-Series Model Capacity and Performance..</td>
<td>157</td>
</tr>
<tr>
<td>VM-Series System Requirements..</td>
<td>158</td>
</tr>
<tr>
<td>VM-Series Firewall CPU Oversubscription..</td>
<td>159</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>DHCP on Management Interfaces and Hypervisor-Assigned MACs</td>
<td>159</td>
</tr>
<tr>
<td>NSX VM-Series Configuration through Panorama</td>
<td>160</td>
</tr>
<tr>
<td>VM-Series Bootstrapping with Block Storage</td>
<td>161</td>
</tr>
<tr>
<td>VM-Series License Deactivation API Key</td>
<td>162</td>
</tr>
<tr>
<td>Networking Features</td>
<td>163</td>
</tr>
<tr>
<td>Tunnel Content Inspection</td>
<td>165</td>
</tr>
<tr>
<td>Multiprotocol BGP</td>
<td>166</td>
</tr>
<tr>
<td>Zone Protection for Multi-path TCP (MPTCP) Evasions</td>
<td>167</td>
</tr>
<tr>
<td>Zone Protection for Non-IP Protocols on a Layer 2 VLAN or Virtual Wire</td>
<td>168</td>
</tr>
<tr>
<td>Zone Protection for SYN Data Payloads</td>
<td>170</td>
</tr>
<tr>
<td>Static Route Removal Based on Path Monitoring</td>
<td>172</td>
</tr>
<tr>
<td>IPv6 Router Advertisement for DNS Configuration</td>
<td>173</td>
</tr>
<tr>
<td>NDP Monitoring for Fast Device Location</td>
<td>175</td>
</tr>
<tr>
<td>Hardware IP Address Blocking</td>
<td>176</td>
</tr>
<tr>
<td>Packet Buffer Protection</td>
<td>177</td>
</tr>
<tr>
<td>Reconnaissance Protection Whitelist</td>
<td>178</td>
</tr>
<tr>
<td>IKE Peer and IPSec Tunnel Capacity Increases</td>
<td>179</td>
</tr>
<tr>
<td>GlobalProtect Features</td>
<td>181</td>
</tr>
<tr>
<td>Clientless VPN</td>
<td>183</td>
</tr>
<tr>
<td>IPv6 for GlobalProtect</td>
<td>185</td>
</tr>
<tr>
<td>Split Tunnel to Exclude by Access Route</td>
<td>187</td>
</tr>
<tr>
<td>External Gateway Priority by Source Region</td>
<td>189</td>
</tr>
<tr>
<td>Internal Gateway Selection by Source IP Address</td>
<td>191</td>
</tr>
<tr>
<td>GlobalProtect Agent Login Enhancement</td>
<td>193</td>
</tr>
<tr>
<td>Authentication Policy and Multi-Factor Authentication for GlobalProtect</td>
<td>194</td>
</tr>
<tr>
<td>SAML 2.0 Authentication for GlobalProtect</td>
<td>196</td>
</tr>
<tr>
<td>Restrict Transparent Agent Upgrades to Internal Network Connections</td>
<td>197</td>
</tr>
<tr>
<td>AirWatch MDM Integration</td>
<td>199</td>
</tr>
<tr>
<td>Enhanced Always-On VPN for Android</td>
<td>200</td>
</tr>
<tr>
<td>Resilient VPN Connection</td>
<td>203</td>
</tr>
<tr>
<td>Gateway Selection Enhancement</td>
<td>206</td>
</tr>
<tr>
<td>DNS Query Enhancement</td>
<td>208</td>
</tr>
<tr>
<td>PAN-OS XML API Features</td>
<td>211</td>
</tr>
<tr>
<td>Admin-Level Commit and Revert using API</td>
<td>213</td>
</tr>
<tr>
<td>SAML 2.0 Authentication using API</td>
<td>214</td>
</tr>
<tr>
<td>CloudWatch Integration for VM-Series Firewalls on AWS using API</td>
<td>216</td>
</tr>
<tr>
<td>Listing of Deactivation License Token Using API</td>
<td>217</td>
</tr>
</tbody>
</table>
Upgrade to PAN-OS 8.0

- Upgrade/Downgrade Considerations
- Upgrade the Firewall to PAN-OS 8.0
- Downgrade from PAN-OS 8.0
Upgrade/Downgrade Considerations

The following table lists the new features that have upgrade or downgrade impacts. Make sure you understand all potential changes before you upgrade to or downgrade from a PAN-OS 8.0 release. For additional information about PAN-OS 8.0 releases, refer to the PAN-OS 8.0 Release Notes.

For M-100 appliances running in Panorama mode, Palo Alto Networks recommends upgrading the memory to 32GB to avoid the risk of running out of memory for management and log collection tasks. See M-100 Memory Upgrade Guide for more information.

After upgrading a PA-7000 Series firewall to 8.0, Panorama no longer considers it as a Log Collector. This means you will no longer be able to view your logs and reports from Panorama until you enable PA-7000 Series Firewall Log Forwarding to Panorama. Before upgrading, make sure you have a log collection infrastructure that will handle the logging rate and quantity of PA-7000 Series logs.

- To deploy VM-Series firewalls on AWS in a high availability configuration, you must upgrade to PAN-OS 8.0.1.
- Upgrading a PA-200 or PA-500 firewall to PAN-OS 8.0 can take 30-60 minutes to complete. Ensure uninterrupted power to your firewall throughout the upgrade process.

To ensure optimal performance for all new features, download and install the latest Applications and Threats, Antivirus, and WildFire content updates (the minimum content versions required for PAN-OS 8.0 are listed in the PAN-OS 8.0 Release Notes). As a best practice, enable the firewall to download and install new content updates as they become available.

Table 1: PAN-OS 8.0 Upgrade/Downgrade Considerations

<table>
<thead>
<tr>
<th>Feature</th>
<th>Upgrade Considerations</th>
<th>Downgrade Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Security Modules</td>
<td></td>
<td>(PAN-OS 8.0.2 and later releases) To downgrade to a release earlier than PAN-OS 8.0.2, you must ensure that the master key is stored locally on Panorama or on the firewall, not on a hardware security module (HSM).</td>
</tr>
<tr>
<td>Support for Third-Party SFP Transceivers</td>
<td>A small percentage of writable third-party SFP transceivers (not purchased from Palo Alto Networks) can stop working or experience other issues after you upgrade the firewall to which they are connected to a PAN-OS 8.0 release. Because it is typically impossible to know if a third-party SFP is writable, Palo Alto Networks® recommends that,</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Upgrade Considerations</td>
<td>Downgrade Considerations</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| | if your firewall uses third-party SFPs, you do not upgrade to a PAN-OS 8.0 release until you are able to upgrade to a maintenance release that addresses this issue. Additionally, when you are ready to upgrade, make sure that you do not reboot the firewall after you download and install the PAN-OS 8.0 base image until after you download and install a maintenance release that contains the fix for this issue.

This will be the case again if you upgrade to PAN-OS 8.1 even after you address this issue in PAN-OS 8.0.

For more information about this known issue and maintenance releases related to this issue, refer to the PAN-OS 8.0 release notes. | When you downgrade Panorama and the Log Collectors from Panorama 8.0, you will need to migrate logs back to the pre-8.0 format. This procedure will take approximately 24 hours for each 2TB of data. You cannot pause or stop the migration, so you will need to schedule a maintenance window to accommodate. To downgrade, refer to Downgrade from Panorama 8.0. |
| Log Query Acceleration on Panorama | When you upgrade Panorama and the Log Collectors to PAN-OS 8.0, logs generated from earlier PAN-OS versions will be unavailable when viewing charts on the ACC and when generating reports until you migrate the logs to the new format. Refer to Migrate Existing Logs to the New Log Format introduced in PAN-OS 8.0.

With the log query and reporting engine enhancements that improve the speed in generating reports and executing queries, note that the logging rates on the M-Series appliances are lower than in previous Panorama releases. For maximum logging rates in PAN-OS 8.0, see Panorama Models.

PAN-OS 8.0 introduces two new log types (Palo Alto Networks Platform Logs and 3rd Party External Logs). On upgrade, 4% of the total disk space is allocated for the new log databases. As a result, if Panorama or the Dedicated Log Collector do not have 4% of total disk space, the oldest logs are purged to make space available. | |
<table>
<thead>
<tr>
<th>Feature</th>
<th>Upgrade Considerations</th>
<th>Downgrade Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKE Peer and IPSec Tunnel Capacity Increases</td>
<td>The firewall prevents a downgrade if the number of IKE gateways or IPSec tunnels you are using in PAN-OS 8.0 exceeds the product limit for the release to which you are downgrading. To successfully download in this case, first delete the oversubscribed IKE peers or IPSec tunnels to the number supported in the downgraded release and then downgrade. Alternatively, restore a compatible configuration and downgrade.</td>
<td></td>
</tr>
<tr>
<td>VM-Series Firewall Performance Enhancements</td>
<td>You must increase your VM-Series firewall allocated hardware resources before upgrading to PAN-OS 8.0. For more information about new minimum hardware requirements, see VM-Series System Requirements.</td>
<td>Downgrading from PAN-OS 8.0 to an older release returns VM-Series models to their pre-PAN-OS 8.0 capacities and performance levels. Downgrading a VM-50, VM-500, or VM-700 firewall is not supported.</td>
</tr>
<tr>
<td>Authentication for External Dynamic Lists</td>
<td>When you create or edit an external dynamic list hosted on a web server with an HTTPS URL, you must enable Authentication for External Dynamic Lists to commit your list changes.</td>
<td></td>
</tr>
</tbody>
</table>
| Telemetry and Threat Intelligence Sharing | • The Statistics Service feature, available in PAN-OS 7.1 and earlier versions, is superseded by the Telemetry and Threat Intelligence feature in PAN-OS 8.0. Any Statistics Service settings you configured before upgrading are carried over to the Telemetry and Threat Intelligence Sharing tab.
• If you enabled passive DNS monitoring on multiple firewalls through Panorama before upgrading to PAN-OS 8.0, passive DNS monitoring is disabled after you upgrade.
• The service routes Palo Alto Updates and WildFire Public are merged into Palo Alto Networks Services.
• Any Telemetry and Threat Intelligence settings you configured before downgrading that are available in the Statistics Service feature are carried over.
• If you enabled passive DNS monitoring in PAN-OS 8.0 (through the firewall or through Panorama) and downgrade to an earlier release, passive DNS monitoring is disabled.
• The Palo Alto Networks Services service route is branched into Palo Alto Updates and WildFire Public. These two service routes will use the same settings previously configured for Palo Alto Networks Services. | |
<p>| External Dynamic List Enhancements | After you upgrade, you have the option to customize the service route that the firewall uses to retrieve an external dynamic list from the web server that hosts the list. | • If you have configured the firewall to use the External Dynamic Lists service route for retrieving external dynamic list updates in PAN-OS 8.0, it switches to the Palo Alto Updates service route upon downgrade. |</p>
<table>
<thead>
<tr>
<th>Feature</th>
<th>Upgrade Considerations</th>
<th>Downgrade Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Dynamic Lists</td>
<td>- Earlier PAN-OS versions support fewer external dynamic lists. Check that the total number of external dynamic lists on your firewall (both used and not used in policy) does not exceed the limit supported in the PAN-OS version to which your firewall will be downgraded. If it does exceed the limit, you will not be allowed to proceed with the downgrade until you reduce the number of external dynamic lists on the firewall to be within the limit.</td>
<td></td>
</tr>
<tr>
<td>Palo Alto Networks Malicious IP Address Feeds</td>
<td></td>
<td>Before downgrading to an earlier release, ensure that the Palo Alto Networks Malicious IP Address Feeds and custom external dynamic lists based on either of these feeds are not used in policy.</td>
</tr>
</tbody>
</table>
| **Globally Unique Threat IDs** | - Because antivirus and DNS signatures now have globally unique IDs, the threat ID ranges that existed for these signatures in previous release versions no longer apply. If you have used antivirus and DNS threat ID ranges to build any custom logic, to create custom reports, or as part of an integration with a security information and event management (SIEM) solution, revisit those areas to see if you can leverage the new threat categories as a replacement for the ID ranges. See New Threat Categories and How to Use Them.
- Antivirus and DNS threat exceptions are not migrated with the upgrade to PAN-OS 8.0. After upgrading to PAN-OS 8.0, reconfigure threat exceptions using the new, unique threat IDs (New Threat Categories and How to Use Them). | |
<p>| Data Filtering Support for Data Loss Prevention (DLP) Solutions | Data pattern objects defined with both regular expression patterns and social security number and credit card patterns are separated into two separate data pattern objects following the upgrade to PAN-OS 8.0: one data pattern object contains the regular expression patterns, | |</p>
<table>
<thead>
<tr>
<th>Feature</th>
<th>Upgrade Considerations</th>
<th>Downgrade Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Mode on GlobalProtect Gateways</td>
<td>The other contains the social security and credit card number patterns. The separate data pattern objects continue to remain attached to data filtering profiles they were configured with before the PAN-OS 8.0 upgrade. To learn more, take a First Look at New and Updated Data Filtering Options.</td>
<td>If you enable tunneling on a GlobalProtect internal gateway and then downgrade to an older release of PAN-OS, the gateway is removed and you must reconfigure the gateway after you downgrade. If you saved a PAN-OS 7.1 configuration that includes tunnel-mode gateways and you want to restore the configuration, downgrade the firewall from PAN-OS 8.0 to PAN-OS 7.1 first, then select and commit the saved PAN-OS 7.1 configuration.</td>
</tr>
<tr>
<td>GlobalProtect External Gateways</td>
<td>For GlobalProtect agent configurations where you configured an external gateway with a Manual only priority (connections are not established automatically) and disabled Manual connections (users cannot manually switch to the gateway), GlobalProtect will add a Manual only priority rule and activate (enable) Manual connections when you upgrade. This allows users to manually switch to the gateway, which is required to support External Gateway Priority by Source Region.</td>
<td></td>
</tr>
<tr>
<td>GlobalProtect Portal Authentication</td>
<td>(PAN-OS 8.0.5 and later releases) After you upgrade to PAN-OS 8.0.5 or a later release, users who have endpoints with valid authentication override cookies but who were removed from the Allow List of authentication profiles cannot access GlobalProtect portals or gateways (internal or external). This prevents users with valid cookies but disabled accounts from accessing the portals and gateways.</td>
<td>(PAN-OS 8.0.5 and later releases) After you downgrade to PAN-OS 8.0.4 or an earlier release, user endpoints with valid authentication override cookies can access a GlobalProtect portal or gateway (internal or external) even if the corresponding user accounts were disabled and removed from the Allow List of authentication profiles. You must reconfigure policies (using dynamic block lists or source address/user lists) to prevent portal and gateway access in such cases.</td>
</tr>
<tr>
<td>Feature</td>
<td>Upgrade Considerations</td>
<td>Downgrade Considerations</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Authentication Policy</td>
<td>• Upon upgrading, the firewall changes existing Captive Portal rules to Authentication rules. Within the Authentication rules, the Source User defaults to unknown and the Authentication Enforcement object defaults to one of the objects that the firewall creates automatically: default-browser-challenge, default-web-form, or default-no-captive-portal. Each Authentication rule uses the object that is equivalent to the Action option in the corresponding Captive Portal rule. • The firewall does not convert System logs that it generated for authentication events before the upgrade to the new Authentication log type after upgrading. • Panorama 8.0 cannot push Authentication rules to firewalls running PAN-OS 7.1 or earlier unless the rules reference one of the predefined Authentication Enforcement objects. Firewalls ingest the Authentication rules as Captive Portal rules with the Action derived from the Authentication Enforcement object.</td>
<td>• Upon downgrading, the firewall changes Authentication rules to Captive Portal Rules with the Action derived from the Authentication Enforcement object. • Upon downgrading, the firewall discards Authentication logs.</td>
</tr>
<tr>
<td>Feature</td>
<td>Upgrade Considerations</td>
<td>Downgrade Considerations</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>destinations for Threat logs with High and Critical severities will become two profiles with the Filter set to (severity eq critical) in one profile and to (severity eq high) in the other.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When you upgrade the firewall, it creates a match list profile for each Device > Log Settings entry that specifies a destination. For entries that apply to specific severity levels, the match list profiles specify a predefined filter. For example, a pre-upgrade entry that specifies destinations for System logs with medium severity will become a match list profile with the Name set to system-medium and the Filter set to (severity eq medium).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Forwarding from PA-7000 Series Firewalls to Panorama</td>
<td>After upgrading a PA-7000 Series firewall, Panorama no longer considers the firewall as a Log Collector and you will no longer be able to view logs and reports from Panorama until you enable log forwarding.</td>
<td></td>
</tr>
<tr>
<td>Before upgrading PA-7000 Series firewalls to PAN-OS 8.0, make sure your Log Collectors have enough capacity to support the log collection rates and volume of logs your PA-7000 Series firewalls will forward to Panorama. See the table in Panorama Models to determine your log collection requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After you enable log forwarding to Panorama, the firewall forwards only new logs. To view log information on Panorama and generate reports from logs generated prior to enabling log collection, you must migrate existing logs to Panorama using a CLI command. See PA-7000 Series Firewall Log Forwarding to Panorama for more details.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Upgrade Considerations</td>
<td>Downgrade Considerations</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Logging Enhancements on the Panorama Virtual Appliance</td>
<td>After upgrading, the Panorama virtual appliance remains in Legacy mode by default and can still support NFS log storage. However, after you switch to Panorama mode, the virtual appliance can no longer support NFS storage; you must then migrate the logs on the NFS to the Log Collectors.</td>
<td>Before downgrading, you must switch the Panorama virtual appliance from Panorama mode to Legacy mode. To store logs after switching the mode, you must use the old virtual disk or NFS storage that Panorama used for logging in Legacy mode.</td>
</tr>
<tr>
<td>Group-Based Reporting in Panorama</td>
<td>After upgrading Panorama, you must enable reporting and filtering on groups in the Panorama settings (Panorama > Setup > Management) if you want to filter logs and generate reports based on user groups; the option is disabled by default. If you want to disable this feature for specific device groups, you must clear the Store users and groups from Master Device option in those device groups (Panorama > Device Groups); the option is enabled by default.</td>
<td></td>
</tr>
<tr>
<td>User-ID Syslog Monitoring Enhancements</td>
<td>After upgrading, you must set the Event Type to login for every existing Syslog Parse profile assigned to syslog senders in the Server Monitoring list (Device > User Identification > User Mapping).</td>
<td></td>
</tr>
<tr>
<td>Windows-based User-ID Agent</td>
<td>After you uninstall the PAN-OS 8.0 Windows-based User-ID agent, perform the workaround described in Downgrade a Windows Agent from PAN-OS 8.0 before you install an earlier agent release.</td>
<td></td>
</tr>
</tbody>
</table>
| **NSX VM-Series Configuration Through Panorama** | - If you are running NSX Manager 6.2.3 or earlier, create an SSL TLS Profile to allow TLS version 1.0 before upgrading from 7.1.x to 8.0. No SSL TLS profile is required when running NSX Manager 6.2.4 or later.
- After you upgrade Panorama from a 7.1 release to a Panorama 8.0 | |
<table>
<thead>
<tr>
<th>Feature</th>
<th>Upgrade Considerations</th>
<th>Downgrade Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>release, the Service Manager on Panorama is out of sync. Executing a manual NSX Config-sync renames the service profile by adding the service definition name as a prefix of the service profile name. For example, a service profile called PAN_NSX_1 with a service definition called PAN-SD-1 in a 7.1 release is renamed PAN-SD-1_PAN_NSX_1 in the 8.0 release.</td>
<td>If you enable Packet Buffer Protection or you configure a Zone Protection profile with basic evasion protection or strict evasion protection, and downgrade to a PAN-OS 7.1 release, the downgrade fails with auto-commit errors. If you saved a PAN-OS 7.1 configuration before upgrading, select the PAN-OS 7.1 configuration when downgrading. This removes the Packet Buffer Protection configuration and allows downgrade to complete successfully.</td>
</tr>
<tr>
<td>Packet Buffer Protection and Zone Protection Profile</td>
<td>If the ECMP IP Hash setting is configured to Use Source Address Only and you want to downgrade from PAN-OS 8.0.3 (or a later release) to PAN-OS 8.0.2 or an earlier PAN-OS 8.0 release, first save your PAN-OS 8.0.3 (or later) running configuration. Then perform the downgrade and, after the downgrade is complete, reload your saved configuration and Commit.</td>
<td>After you downgrade from a PAN-OS 8.0 release to PAN-OS 7.1.15 or an earlier release, you must reset the QoS Egress Max to 16,000 Mbps or less to avoid commit failures (Network > QoS > <interface> > Physical Interface).</td>
</tr>
<tr>
<td>ECMP Enhancement to IP Hash (PAN-OS 8.0.3 and later releases)</td>
<td>If you upgrade from a PAN-OS version earlier than PAN-OS 8.0.11 (such as PAN-OS 7.1, PAN-OS 8.0, or PAN-OS 8.0.1) to PAN-OS 8.0.11, you can use the CLI operational command set system setting bgp-mrai-timer value to configure a BGP minimum route advertisement interval for all BGP peers.</td>
<td>If you downgrade from PAN-OS 8.0.11 (or a later PAN-OS 8.0 release) to a release earlier than PAN-OS 8.0.11, the BGP minimum route advertisement interval that you configured with the CLI operational command set system setting bgp-mrai-timer value will be lost.</td>
</tr>
<tr>
<td>QoS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Upgrade Considerations</td>
<td>Downgrade Considerations</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>peer groups (range is 1 to 600 seconds; default is 30 seconds).</td>
<td></td>
<td>reverts to the hard-coded value of 30 seconds.</td>
</tr>
</tbody>
</table>
Upgrade the Firewall to PAN-OS 8.0

How you upgrade to PAN-OS 8.0 depends on whether you have standalone firewalls or firewalls in a high availability (HA) configuration and, for either scenario, whether you use Panorama to manage your firewalls. Review the PAN-OS 8.0 Release Notes and then follow the procedure specific to your configuration:

- Determine the Upgrade Path to PAN-OS 8.0
- Upgrade Firewalls Using Panorama
- Upgrade a Firewall to PAN-OS 8.0
- Upgrade an HA Firewall Pair to PAN-OS 8.0

When upgrading firewalls that you manage with Panorama or firewalls that are configured to forward content to a WF-500 appliance, you must first upgrade Panorama and its Log Collectors and then upgrade the WildFire appliance before you upgrade the firewalls.

Determine the Upgrade Path to PAN-OS 8.0

When you upgrade from one PAN-OS feature release version to a later feature release, you cannot skip the installation of any feature release versions in the path to your target release (for example, to get from a 7.0 release version to 8.0, you would also need to install a 7.1 release version). In most cases, the recommended path when moving from one feature release to the next is to download the base image for the next feature release version and then download and install your target maintenance release version. You must have both the base image and the maintenance release image on the firewall for installation to be successful. If the firewall doesn't have enough disk space to hold both the base image and the maintenance release image, it will delete the base image and you will see an error message when you attempt to install the maintenance release. In this case you will need to re-download and install the base image before you can download and install the maintenance release. To minimize downtime for your users, perform upgrades during non-business hours.

For manual upgrades, you must install the base image for a feature release before you upload and install a maintenance release image.

Determine the upgrade path as follows:

STEP 1 Identify which version is currently installed.

- From Panorama, select Panorama > Managed Devices and check the Software Version on the firewalls you plan to upgrade.
- From the firewall, select Device > Software and check which version has a check mark in the Currently Installed column.
STEP 2 | Identify the upgrade path:

Review the known issues and changes to default behavior in the Release Notes and upgrade/downgrade considerations in the New Features Guide for each release through which you pass as part of your upgrade path.

<table>
<thead>
<tr>
<th>Installed PAN-OS Version</th>
<th>Recommended Upgrade Path to PAN-OS 8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.x</td>
<td>If you are already running a PAN-OS 7.1 release, download and install the preferred PAN-OS 7.1 maintenance release and reboot. You can then proceed to Upgrade the Firewall to PAN-OS 8.0.</td>
</tr>
<tr>
<td>7.0.x</td>
<td>Download PAN-OS 7.1.0. Download and install the latest preferred 7.1.x maintenance release and reboot. Proceed to Upgrade the Firewall to PAN-OS 8.0.</td>
</tr>
</tbody>
</table>

Upgrade Firewalls Using Panorama

Review the PAN-OS 8.0 Release Notes and then use the following procedure to upgrade firewalls that you manage with Panorama. This procedure applies to standalone firewalls and firewalls deployed in a high availability (HA) configuration.

If Panorama is unable to connect directly to the updates server, follow the procedure for deploying updates to firewalls when Panorama is not internet-connected so that you can manually download images to Panorama and then distribute the images to firewalls.

Before you can upgrade firewalls from Panorama, you must:
Make sure Panorama is running the same or a later PAN-OS version than you are upgrading to. You must upgrade Panorama and its Log Collectors to 8.0 before upgrading the managed firewalls to this release.

Ensure that firewalls are connected to a reliable power source. A loss of power during an upgrade can make a firewall unusable.

STEP 1 | Save a backup of the current configuration file on each managed firewall you plan to upgrade.

> **Although the firewall automatically creates a configuration backup, it is a best practice to create and externally store a backup before you upgrade.**

1. From the Panorama web interface, select **Panorama > Setup > Operations** and click **Export Panorama and devices config bundle** to generate and export the latest configuration backup of Panorama and of each managed appliance.

2. Save the exported file to a location external to the firewall. You can use this backup to restore the configuration if you have problems with the upgrade.

STEP 2 | Update the content release version on the firewalls you plan to upgrade.

Refer to the **Release Notes** for the minimum content release version required for PAN-OS 8.0. Make sure to follow the **Best Practices for Application and Threat Content Updates** when deploying content updates to Panorama and managed firewalls.

1. Select **Panorama > Device Deployment > Dynamic Updates** and **Check Now** for the latest updates. If an update is available, the Action column displays a **Download** link.

2. If not already installed, **Download** the latest content release version.

3. Click **Install**, select the firewalls on which you want to install the update, and click **OK**. If you are upgrading HA firewalls, you must update content on both peers.
By default, you can upload a maximum of two software or content updates of each type to a Panorama appliance and if you download a third update of the same type, Panorama will delete the update for the earliest version of that type. If you need to upload more than two software updates or content updates of a single type, use the `set max-num-images count <number>` CLI command to increase the maximum.

STEP 3 | (HA firewall upgrades only) If you will be upgrading firewalls that are part of an HA pair, disable preemption. You need only disable this setting on one firewall in each HA pair.

1. Select Device > High Availability and edit the Election Settings.
2. If enabled, disable (clear) the Preemptive setting and click OK.
3. Commit your change. Make sure the commit is successful before you proceed with the upgrade.

STEP 4 | Determine the Upgrade Path to PAN-OS 8.0.

You cannot skip installation of any feature release versions in the path from the currently running PAN-OS version to PAN-OS 8.0.0. Review the known issues and changes to default behavior in the Release Notes and upgrade/downgrade considerations in the New Features Guide for each release through which you pass as part of your upgrade path.

If upgrading more than one firewall, streamline the process by determining upgrade paths for all firewalls before you start downloading images.

STEP 5 | Download the target PAN-OS 8.0 release image.

2. Download the firewall-specific file (or files) for the release version to which you are upgrading. You must download a separate installation file for each firewall model (or firewall series) that you intend to upgrade.
For example, to upgrade your PA-200, PA-3050, and PA-5050 firewalls to PAN-OS 8.0.0, download the PanOS_200-8.0.0, PanOS_3000-8.0.0, and PanOS_5000-8.0.0 images. After you successfully download an image, the Action column changes to Install for that image.

STEP 6 | Install the PAN-OS 8.0 software update on the firewalls.

1. Click **Install** in the Action column that corresponds to the firewall models you want to upgrade. For example, if you want to upgrade your PA-200 firewalls, click **Install** in the row that corresponds to PanOS_200-8.0.0.

2. In the Deploy Software file dialog, select all firewalls that you want to upgrade. To reduce downtime, select only one peer in each HA pair. For active/passive pairs, select the passive peer; for active/active pairs, select the active-secondary peer.

3. **(HA firewall upgrades only)** Make sure **Group HA Peers** is not selected.

4. Select **Reboot device after install**.

5. To begin the upgrade, click **OK**.

6. After the installation completes successfully, reboot using one of the following methods:
7. After the firewalls finish rebooting, select Panorama > Managed Devices and verify the Software Version is 8.0.0 for the firewalls you upgraded. Also verify that the HA status of any passive firewalls you upgraded is still passive.

STEP 7 | (HA firewall upgrades only) Upgrade the second HA peer in each HA pair.

1. (Active/passive upgrades only) Suspend the active device in each active/passive pair you are upgrading.
 1. Switch context to the active firewall.
 2. In the High Availability widget on the Dashboard, verify that Local firewall state is Active and the Peer is Passive).

4. Go back to the High Availability widget on the Dashboard and verify that Local changed to Passive and Peer changed to Active.

2. Go back to the Panorama context and select Panorama > Device Deployment > Software.
3. Click Install in the Action column that corresponds to the firewall models of the HA pairs you are upgrading.
4. In the Deploy Software file dialog, select all firewalls that you want to upgrade. This time, select only the peers of the HA firewalls you just upgraded.
5. Make sure Group HA Peers is not selected.
6. Select Reboot device after install.
7. To begin the upgrade, click OK.
8. After the installation completes successfully, reboot using one of the following methods:
 - If you are prompted to reboot, click Yes.
 - If you are not prompted to reboot, select Device > Setup > Operations and Reboot Device.
9. (Active/passive upgrades only) From the CLI of the peer you just upgraded, run the following command to make the firewall functional again:

 request high-availability state functional

STEP 8 | Verify the software and content release version running on each managed firewall.

1. On Panorama, select Panorama > Managed Devices.
2. Locate the firewalls and review the content and software versions in the table.

 For HA firewalls, you can also verify that the HA Status of each peer is as expected.
STEP 9 | (HA firewall upgrades only) If you disabled preemption on one of your HA firewalls before you upgraded, then edit the Election Settings (Device > High Availability) and re-enable the Preemptive setting for that firewall and then Commit the change.

Upgrade a Standalone Firewall to PAN-OS 8.0

Review the PAN-OS 8.0 Release Notes and then use the following procedure to upgrade a firewall not in an HA configuration to PAN-OS 8.0.

If your firewalls are configured to forward samples to a WF-500 appliance for analysis, you must upgrade the WildFire appliance to PAN-OS 8.0 before you upgrade the forwarding firewalls.

Ensure the firewall is connected to a reliable power source. A loss of power during an upgrade can make the firewall unusable.

STEP 1 | Save a backup of the current configuration file.

Although the firewall automatically creates a configuration backup, it is a best practice to create and externally store a backup before you upgrade.

1. Select Device > Setup > Operations and click Export named configuration snapshot.

2. Select the XML file that contains your running configuration (for example, running-config.xml) and click OK to export the configuration file.

3. Save the exported file to a location external to the firewall. You can use this backup to restore the configuration if you have problems with the upgrade.
STEP 2 | Ensure that the firewall is running the latest content release version. Refer to the Release Notes for the minimum content release version you must install for a PAN-OS 8.0 release. Make sure to follow the Best Practices for Application and Threat Content Updates

1. Select Device > Dynamic Updates and check which Applications or Applications and Threats to determine which update is Currently Installed.

2. If the firewall is not running the minimum required update or a later version, Check Now to retrieve a list of available updates.

3. Locate and Download the content release version you intend to install. After you successfully download a content update file, the link in the Action column changes from Download to Install for that release version.

4. Install the update.

STEP 3 | Determine the Upgrade Path to PAN-OS 8.0

You cannot skip installation of any feature release versions in the path from the currently running PAN-OS version to PAN-OS 8.0.

Review the known issues and changes to default behavior in the Release Notes and upgrade/downgrade considerations in the New Features Guide for each release through which you pass as part of your upgrade path.

STEP 4 | Upgrade to PAN-OS 8.0.

If your firewall does not have internet access from the management port, you can download the software image from the PaloAltoNetworks Support Portal and then manually Upload it to your firewall.

1. Select Device > Software and click Check Now to display the latest PAN-OS updates.

2. Locate and Download PAN-OS 8.0.0.

3. After you download the image (or, for a manual upgrade, after you upload the image), Install the image.

As a best practice, when upgrading to a PAN-OS 8.0 release, install the PAN-OS 8.0.0 base image and reboot the firewall before you download and install a PAN-OS 8.0 maintenance release.

4. After the installation completes successfully, reboot using one of the following methods:
 - If you are prompted to reboot, click Yes.
- If you are not prompted to reboot, select Device > Setup > Operations and click Reboot Device.

STEP 5 | Verify that the firewall is passing traffic.

Select Monitor > Session Browser.

Upgrade an HA Firewall Pair to PAN-OS 8.0

Review the PAN-OS 8.0 Release Notes and then use the following procedure to upgrade a pair of firewalls in a high availability (HA) configuration. This procedure applies to both active/passive and active/active configurations.

To avoid downtime when upgrading firewalls that are in a high availability (HA) configuration, update one HA peer at a time: For active/active firewalls, it doesn’t matter which peer you upgrade first (though for simplicity, this procedure shows you how to upgrade the active-secondary peer first). For active/passive firewalls, you must upgrade the passive peer first, suspend the active peer (fail over), update the active peer, and then return that peer to a functional state (fail back). To prevent failover during the upgrade of the HA peers, you must make sure preemption is disabled before proceeding with the upgrade. You only need to disable preemption on one peer in the pair.

Ensure the firewalls are connected to a reliable power source. A loss of power during an upgrade can make firewalls unusable.

STEP 1 | Save a backup of the current configuration file.

Although the firewall automatically creates a backup of the configuration, it is a best practice to create and externally store a backup before you upgrade.

Perform these steps on each firewall in the pair:

1. Select Device > Setup > Operations and click Export named configuration snapshot.
2. Select the XML file that contains your running configuration (for example, `running-config.xml`) and click OK to export the configuration file.

![Export Running Configuration](image)

3. Save the exported file to a location external to the firewall. You can use this backup to restore the configuration if you have problems with the upgrade.

STEP 2 | Ensure that each firewall in the HA pair is running the latest content release version.

Refer to the Release Notes for the minimum content release version you must install for a PAN-OS 8.0 release. Make sure to follow the Best Practices for Application and Threat Content Updates.

1. Select Device > Dynamic Updates and check which Applications or Applications and Threats to determine which update is Currently Installed.

![Dynamic Updates](image)

2. If the firewalls are not running the minimum required content release version or a later version required for PAN-OS 8.0, Check Now to retrieve a list of available updates.

3. Locate and Download the desired content release version.

After you successfully download a content update file, the link in the Action column changes from Download to Install for that content release version.

4. Install the update. You must install the update on both peers.

STEP 3 | Disable preemption on the first peer in each pair. You need only disable this setting on one firewall in the HA pair but ensure that the commit is successful before you proceed with the upgrade.

1. Select Device > High Availability and edit the Election Settings.

2. If enabled, disable (clear) the Preemptive setting and click OK.

![Election Settings](image)

3. Commit the change.
STEP 4 | Determine the Upgrade Path to PAN-OS 8.0.
You cannot skip installation of any feature release versions in the path from the currently running PAN-OS version to PAN-OS 8.0.

Review the known issues and changes to default behavior in the PAN-OS 8.0 Release Notes and upgrade/downgrade considerations in the New Features Guide for each release through which you pass as part of your upgrade path.

STEP 5 | Install PAN-OS 8.0 on the first peer.
It doesn’t really matter which peer you upgrade first. However, if you want to minimize downtime in an active/passive configuration, upgrade the passive peer first.

If you want to test that HA is functioning properly before the upgrade, consider upgrading the active peer in an active/passive configuration first to ensure that failover occurs without incident.

1. On the first peer, select Device > Software and click Check Now for the latest updates.
2. Locate and Download PAN-OS 8.0.0.

If your firewall does not have internet access from the management port, you can download the software image from the Palo Alto Networks Support Portal and then manually Upload it to your firewall.

3. After you download the image (or, for a manual upgrade, after you upload the image), Install the image.

As a best practice, when upgrading to a PAN-OS 8.0 release, install the PAN-OS 8.0.0 base image and reboot the firewall before you download and install a PAN-OS 8.0 maintenance release.

4. After the installation completes successfully, reboot using one of the following methods:
 - If you are prompted to reboot, click Yes.
 - If you are not prompted to reboot, select Device > Setup > Operations and Reboot Device.
5. After the device finishes rebooting, view the High Availability widget on the Dashboard and verify that the device you just upgraded is still the passive or active-secondary peer in the HA configuration.

STEP 6 | Install PAN-OS 8.0 on the second peer.
1. (Active/passive configurations only) Suspend the active peer so that HA fails over to the peer you just upgraded.
 1. On the active peer, select Device > High Availability > Operational Commands and click Suspend local device.

2. View the High Availability widget on the Dashboard and verify that the state changes to Passive.
3. On the other peer, verify that it is active and is passing traffic (Monitor > Session Browser).
2. On the second peer, select Device > Software and click Check Now for the latest updates.
3. Locate and Download PAN-OS 8.0.0.
4. After you download the image, Install it.
5. After the installation completes successfully, reboot using one of the following methods:
 - If you are prompted to reboot, click Yes.
 - If you are not prompted to reboot, select Device > Setup > Operations and Reboot Device.
6. (Active/passive configurations only) From the CLI of the peer you just upgraded, run the following command to make the firewall functional again:
 \[\text{request high-availability state functional}\]

STEP 7 | Verify that both peers are passing traffic as expected.

In an active/passive configuration, only the active peer should be passing traffic; both peers should be passing traffic in an active/active configuration.

Run the following CLI commands to confirm that the upgrade succeeded:
- (Active peers only) To verify that active peers are passing traffic, run the \texttt{show session all} command.
- To verify session synchronization, run the \texttt{show high-availability interface ha2} command and make sure that the Hardware Interface counters on the CPU table are increasing as follows:
 - In an active/passive configuration, only the active peer shows packets transmitted; the passive peer will show only packets received.

 \[\text{If you enabled HA2 keep-alive, the hardware interface counters on the passive peer will show both transmit and receive packets. This occurs because HA2 keep-alive is bi-directional, which means that both peers transmit HA2 keep-alive packets.}\]
 - In an active/active configuration, you will see packets received and packets transmitted on both peers.

STEP 8 | If you disabled preemption prior to the upgrade, re-enable it now.

1. Select Device > High Availability and edit the Election Settings.
2. Select Preemptive and click OK.
3. Commit the change.
Downgrade from PAN-OS 8.0

The way you downgrade a firewall from PAN-OS 8.0 depends on whether you are downgrading to a previous feature release (where the first or second digit in the PAN-OS version changes, for example, from 8.0.2 to 7.1.7 or from 7.1.6 to 7.0.9) or downgrading to a maintenance release version within the same feature release (where the third digit in the release version changes, for example, from 8.0.2 to 8.0.0). When you downgrade from one feature release to an earlier feature release, you can migrate the configuration from the later release to accommodate new features. To migrate the PAN-OS 8.0 configuration to an earlier PAN-OS release, first restore the configuration for the feature release to which you are downgrading. You do not need to restore the configuration when you downgrade from one maintenance release to another within the same feature release.

- Downgrade a Firewall to a Previous Maintenance Release
- Downgrade a Firewall to a Previous Feature Release
- Downgrade a Windows Agent from PAN-OS 8.0

Always downgrade into a configuration that matches the software version. Unmatched software versions and configurations can result in failed downgrades or force the system into maintenance mode. This only applies to a downgrade from one feature release to another (for example 8.0.0 to 7.1.3), not to downgrades to maintenance releases within the same feature release version (for example, 7.1.7 to 7.1.2).

If you have a problem with a downgrade, you may need to enter maintenance mode and reset the device to factory default and then restore the configuration from the original config file that was exported prior to the upgrade.

Downgrade a Firewall to a Previous Maintenance Release

Because maintenance releases do not introduce new features, you can downgrade to a previous maintenance release in the same feature release without having to restore the previous configuration. A maintenance release is a release in which the third digit in the release version changes, for example a downgrade from 7.1.7 to 7.1.2 is considered a maintenance release downgrade because only the third digit in the release version is different.

Use the following procedure to downgrade to a previous maintenance release within the same feature release.

STEP 1 | Save a backup of the current configuration file.

Although the firewall automatically creates a backup of the configuration, it is a best practice to create a backup before you downgrade and store it externally.

1. Export named configuration snapshot (Device > Setup > Operations).
2. Select the XML file that contains your running configuration (for example, running-config.xml) and click OK to export the configuration file.
3. Save the exported file to a location external to the firewall. You can use this backup to restore the configuration if you have problems with the downgrade.

STEP 2 | Install the previous maintenance release image.

If your firewall does not have internet access from the management port, you can download the software update from the Palo Alto Networks Support Portal. You can then manually Upload it to your firewall.
1. **Check Now** ([Device > Software](#)) for available images.
2. Locate the version to which you want to downgrade. If the image is not already downloaded, then **Download** it.
3. After the download completes, **Install** the image.
4. After the installation completes successfully, reboot using one of the following methods:
 - If you are prompted to reboot, click **Yes**.
 - If you are not prompted to reboot, go to Device Operations ([Device > Setup > Operations](#)) and **Reboot Device**.

Downgrade a Firewall to a Previous Feature Release

Use the following workflow to restore the configuration that was running before you upgraded to a different feature release. Any changes made since the upgrade are lost so it is important to back up your current configuration so you can restore those changes when you return to the newer feature release.

Use the following procedure to downgrade to a previous feature release.

STEP 1 | Save a backup of the current configuration file.

> Although the firewall automatically creates a backup of the configuration, it is a best practice to create a backup before you upgrade and store it externally.

1. **Export named configuration snapshot** ([Device > Setup > Operations](#)).
2. Select the XML file that contains your running configuration (for example, `running-config.xml`) and **click OK** to export the configuration file.
3. Save the exported file to a location external to the firewall. You can use this backup to restore the configuration if you have problems with the downgrade.

STEP 2 | Install the previous feature release image.

> Autosave versions are created when you upgrade to a new release.

1. **Check Now** ([Device > Software](#)) for available images.
2. Locate the image to which you want to downgrade. If the image is not already downloaded, then **Download** it.
3. After the download completes, **Install** the image.
4. **Select a Config File for Downgrading**, which the firewall will load after you reboot the device. In most cases, you should select the configuration that was saved automatically when you upgraded from the release to which you are now downgrading. For example, if you are running PAN-OS 8.0 and are downgrading to PAN-OS 7.1.3, select `autosave-7.1.3`.
5. After the installation completes successfully, reboot using one of the following methods:
 - If you are prompted to reboot, click **Yes**.
 - If you are not prompted to reboot, go to Device Operations ([Device > Setup > Operations](#)) and **Reboot Device**.

Downgrade a Windows Agent from PAN-OS 8.0

After you uninstall the PAN-OS 8.0 Windows-based User-ID agent, perform the following steps before you install an earlier agent release.
A PAN-OS 8.0 release for the Windows-based User-ID agent works with firewalls running a release earlier than PAN-OS 8.0.

STEP 1 | Open the Windows Start menu and select **Administrative Tools**.

STEP 2 | Select **Computer Management > Services and Applications > Services** and double-click **User-ID Agent**.

STEP 3 | Select **Log On**, select **This account**, and specify the username for the User-ID agent account.

STEP 4 | Enter the **Password** and **Confirm Password**.

STEP 5 | Click **OK** to save your changes.

You can then install the Windows-based User-ID agent for a release earlier than PAN-OS 8.0.
Management Features

- PA-7000 Series Firewall Log Forwarding to Panorama
- NetFlow Support for PA-7000 Series Firewalls
- Action-Oriented Log Forwarding using HTTP
- Selective Log Forwarding Based on Log Attributes
- Admin-Level Commit and Revert
- Extended SNMP Support
PA-7000 Series Firewall Log Forwarding to Panorama

You can now forward logs from PA-7000 Series firewalls to Panorama for improved log retention, which helps you meet regulatory requirements for your industry as well as your internal log archival requirements. Because of this new ability to forward logs to Panorama, upon upgrade Panorama no longer considers the PA-7000 Series firewall as a Log Collector and you will no longer be able to view your logs and reports from Panorama until you enable log forwarding to Panorama. As soon as you enable log forwarding, the PA-7000 Series firewall begins forwarding new logs to Panorama. To forward all logs generated prior to enabling forwarding, you will have to run a CLI command.

Before upgrading your PA-7000 Series firewalls to PAN-OS 8.0, make sure Panorama has a log forwarding infrastructure that is capable of handling the logging rate and volume from the PA-7000 Series firewalls so that you will be able to enable log forwarding to Panorama. Refer to the table in Panorama Models to determine if you have the right logging capacity. If you do not yet have the required logging infrastructure, you can enable Direct Query of PA-7000 Series Firewalls from Panorama, which is available in PAN-OS 8.0.8 and later releases. After enabling this option, you will be able to view logs for managed PA-7000 Series firewalls on the Panorama Monitor tab. Additionally, as with all managed devices, you can generate reports that include PA-7000 Series log data by selecting Remote Device Data as the Data Source. For aggregated views of PA-7000 Series log data within all Panorama views: Application Command Center (ACC), the App-Scope, the log viewer (Monitor tab), and the standard, customizable reporting options on Panorama, you must configure log forwarding as described in the following workflow.

In addition, this feature introduces the option to forward logs to Panorama in a high speed mode to enable higher forwarding and peak rates to Panorama. If you enable this option, the PA-7000 Series firewall will not log locally and you will therefore not be able to view logs, reports or see data in the ACC locally on the firewall.

Use the following workflow to configure log forwarding from a PA-7000 Series firewall to Panorama and optionally enable high speed log forwarding.

STEP 1 | Configure a managed collector if you need a new Log Collector to receive the firewall logs. You can also use an existing Log Collector.

STEP 2 | Configure a new Collector Group or edit an existing one. Assign the PA-7000 Series firewall to specific Log Collectors for log forwarding.

In environments with high logging rates, you can forward to all collectors in the preference list to load balance the log traffic across all Log Collectors in a Collector Group. Load balancing helps reduce bandwidth competition, which might otherwise result in dropped logs.
STEP 3 | Select Objects > Log Forwarding, select the Device Group of the PA-7000 Series firewall, and Add a Log Forwarding profile to define the destinations for Traffic, Threat, WildFire Submission, URL Filtering, Data Filtering, Tunnel Inspection, or Authentication logs. Add one or more match list profiles for each log type you want to forward to Panorama.

If you want to forward only certain logs to Panorama, you can configure Selective Log Forwarding Based on Log Attributes.

STEP 4 | Assign the Log Forwarding profile to the policy rules that trigger log generation and forwarding. Security, Authentication, and DoS Protection rules support log forwarding.

For example, to assign the profile to a Security policy pre-rule, select Policies > Security > Pre Rules, select the Device Group of the PA-7000 Series firewall, edit the rule, select Actions, and select the Log Forwarding profile.
STEP 5 | Select Device > Log Settings, select the Template to which the PA-7000 Series firewall is assigned, and Add one or more match list profiles to forward System, Configuration, User-ID, or HIP Match logs to Panorama.

STEP 6 | Select Network > Interfaces > Ethernet, select the Template to which the PA-7000 Series firewall is assigned, Add Interface, and configure a Log Card interface to perform log forwarding.

STEP 7 | (Optional) If you want to raise the maximum log forwarding rate from 80,000 logs/second (default) to 120,000 logs/second, select Device > Setup > Management, edit the Logging and Reporting Settings, select Log Export and Reporting, and Enable High Speed Log Forwarding.

If you enable this option, the firewall does not store logs locally or display them in the Dashboard, ACC, or Monitor tabs.

STEP 8 | Select Commit > Commit and Push to activate your changes on Panorama and push them to the device groups, templates, and Collector Groups that you modified.

STEP 9 | Verify your changes by logging in to the CLI of the PA-7000 Series firewall and running the following command:

> show logging-status

For successful forwarding, the output indicates that the log forwarding agent is active.

STEP 10 | At the firewall CLI, migrate existing logs to Panorama by entering the following command for each log type:

> request logdb
The command `migrate-to-panorama start end-time <end-time> start-time <start-time> type <log-type>`

This is a one-time task that you must perform after upgrading to PAN-OS 8.0.
NetFlow Support for PA-7000 Series Firewalls

PA-7000 Series firewalls now have the same ability as other Palo Alto Networks firewalls to export session-based NetFlow records to a NetFlow collector. This gives you more comprehensive visibility into how users and devices are using network resources.

STEP 1 | Select Device > Server Profiles > NetFlow and Add a NetFlow server profile to define how the firewall connects to the NetFlow collector.

STEP 2 | Assign the NetFlow server profile to the firewall interfaces that convey the traffic you want to analyze.

For example, to assign the profile to an existing Ethernet interface, select Network > Interfaces > Ethernet, edit the interface, and select the NetFlow Profile.

You can export NetFlow records for Layer 3, Layer 2, virtual wire, tap, VLAN, loopback, and tunnel interfaces. For aggregate Ethernet interfaces, you can export records for the aggregate group but not for individual interfaces within the group.

STEP 3 | Select Device > Setup > Services and define a Service Route Configuration for the interface that the firewall will use to send NetFlow records.

You do not have to select the same interface as the one for which the firewall collects NetFlow records. You cannot select the management (MGT) interface to send NetFlow records.

STEP 4 | Commit your changes.

You are now ready to monitor the firewall traffic in your NetFlow collector. Refer to your NetFlow collector documentation for instructions.
Action-Oriented Log Forwarding using HTTP

To enable better integration between your firewall and IT infrastructure, you can now trigger an action or initiate a workflow on an external HTTP-based service when a log is generated on the firewall. Forward logs from the firewall or Panorama to an HTTP(S) destination to accomplish the following tasks more easily:

- Send an HTTP-based API request directly to a third-party service to trigger an action based on the attributes in a firewall log. You can configure the firewall to work with any HTTP-based service that exposes an API, and modify the URL, HTTP header, parameters, and the payload in the HTTP request to meet your integration needs. This capability when used with the Selective Log Forwarding Based on Log Attributes allows you to forward logs that match a defined criteria so that you can automate a workflow or an action; you do not need to rely on an external system to convert syslog messages or SNMP traps to an HTTP request.

PAN-OS 8.0, includes support for ServiceNow and VMware NSX. You can use the predefined format to send log data to ServiceNow to create an incident report and tag virtual machines using the VMware NSX Manager. Content updates will include updates to the predefined formats added in PAN-OS 8.0 and add new predefined formats to enable integration with other third-party services.

- Tag the source or destination IP address in a log entry automatically and register the IP address and tag mapping to a User-ID agent on the firewall or Panorama, or to a remote User-ID agent so that you can respond to an event and dynamically enforce security policy. This capability extends the use for dynamic address groups that use tags as a filtering criteria to determine its members, so that you can apply security policy rules to an IP address based on tags that define its state or role on the network. For example, whenever the firewall generates a threat log, you can configure the firewall to tag the source IP address in the threat log with a specific tag name. You can then create a dynamic address group that matches on the tag name, and populates the members of the address group. And when you use this dynamic address group as a source or destination object in a policy rule, you can streamline security enforcement and limit these IP addresses from accessing network resources. Additionally, you can register the IP address and tag mappings with a User-ID agent that is configured to redistribute tags across your network infrastructure. This flow of information allows you to have better visibility, context, and control for consistently enforcing security policy irrespective of where the IP address moves across your network.

Configuration and system logs, do not support tagging because the source IP address and destination IP address attributes are not available in these log types.

STEP 1 Create an HTTP server profile to forward logs to an HTTP(S) destination.

The HTTP server profile allows you to specify how to access the server and define the format in which to forward logs to the HTTP(S) destination. By default, the firewall uses the management port to forward these logs.

1. Select **Device > Server Profiles > HTTP**, add a **Name** for the server profile, and select the **Location**. The profile can be **Shared** across all virtual systems or can belong to a specific virtual system.
2. Click **Add** to provide the details for each server. Each profile can have a maximum of 4 servers.
3. Enter a **Name** and **IP Address**.
4. Select the **Protocol** (HTTP or HTTPS). The default **Port** is 80 or 443 respectively; you can modify the port number to match the port on which your HTTP server listens.
5. Select the **HTTP Method** that the third-party service supports—PUT, POST (default), GET and DELETE.
6. Enter the **Username** and **Password** for authenticating to the server, if needed. **Click OK**.
STEP 2 | Select **Test Server Connection** to verify network connectivity between the firewall and the HTTP(S) server.

STEP 3 | Configure the format for the data (**payload**) in the HTTP request.

1. Select **Payload Format**, click the **Log Type** link for each log type for which you want to define the HTTP request format. For example, select the Threat log type.
2. Select the **Pre-defined Formats** drop-down to view the formats available through content updates, or specify a custom format. Use the drop-down to select the attribute you want to include within the HTTP Header, Parameter and Value pairs, and the request payload. You can choose any attribute that selected log type supports.

If you create a custom format, the **URI** is the resource endpoint on the HTTP service. The firewall appends the URI to the IP address you defined earlier to construct the URL for the HTTP request. Ensure that the URI and payload format matches the syntax that your third-party vendor requires.

STEP 4 | Trigger an action. For details, see **Forward logs to an HTTP(S) Destination**.

- Define the match criteria for when the firewall will forward logs to the HTTP server, and attach the HTTP server profile to use. The match criteria allows you to specify the events (based on firewall logs) for which you want to forward logs or initiate an action on the HTTP server.
- Register or unregister a tag on a source or destination IP address in a log entry to a remote User-ID agent.
Selective Log Forwarding Based on Log Attributes

To maximize the efficiency of your incident response and monitoring operations, you can now create custom log forwarding filters based on any log attributes (such as threat type or source user). Instead of forwarding all logs or all logs of specific severity levels, you can use the filters to forward just the information you want to monitor or act on. For example, a security operations analyst who investigates malware attacks might be interested only in Threat logs with the type attribute set to wildfire-virus.

STEP 1 | Configure a server profile for each external service that will receive logs from the firewall. The profiles define how the firewall connects to the services.

For example, to configure an HTTP server profile, select **Device > Server Profiles > HTTP** and **Add** the profile.

STEP 2 | Select **Objects > Log Forwarding** and **Add** a Log Forwarding profile to define the destinations for Traffic, Threat, WildFire Submission, URL Filtering, Data Filtering, Tunnel and Authentication logs.

In each Log Forwarding profile, **Add** one or more **match list profiles** to specify log query filters, forwarding destinations, and automatic actions such as tagging.

In each match list profile, select **Filter > Filter Builder** and **Add** filters based on log attributes.
STEP 3 | Assign the Log Forwarding profile to policy rules and network zones.

The firewall generates and forwards logs based on traffic that matches the rules and zones. Security, Authentication, and DoS Protection rules support log forwarding. For example, to assign the profile to a Security rule, select Policies > Security, edit the rule, select Actions, and select the Log Forwarding profile you created.

STEP 4 | Select Device > Log Settings and configure the destinations for System, Configuration, User-ID, HIP Match, and Correlation logs. For each log type that the firewall will forward, Add one or more match list profiles as you did in the Log Forwarding profile.

STEP 5 | (PA-7000 Series firewalls only) Select Network > Interfaces > Ethernet and Add Interface to configure a log card interface for log forwarding.

STEP 6 | Commit your changes.

STEP 7 | Verify the log destinations you configured are receiving firewall logs:

- Panorama—After configuring log forwarding to Panorama, you can then verify log forwarding.
- Email server—Verify that the specified recipients are receiving logs as email notifications.
- Syslog server—Refer to your syslog server documentation to verify it is receiving logs as syslog messages.
- SNMP trap server—Use your SNMP Manager to verify it is receiving logs as SNMP traps.
- HTTP server—Verify that the HTTP destination is receiving logs.
Admin-Level Commit and Revert

You can now commit, validate, preview, save, and revert changes that you made in a Panorama or firewall configuration independent of changes that other administrators have made. This simplifies your configuration workflow because you don’t have to coordinate commits with other administrators when your changes are unrelated to theirs, or worry about reverting changes other administrators made that weren't ready. When you want to activate, save, or revert some of your own changes but not others, you can also filter by configuration locations. For example, you might want to commit changes only for specific virtual systems, device group, templates, or Collector Groups.

The commit, validate, preview, save, and revert operations apply only to changes made after the last commit. To restore configurations to the state they were in before the last commit, you must load a previously backed up configuration.

For any custom administrator role, you can enable or disable the privileges to commit, save, or revert the changes of other administrators. When configuring custom roles, note that your selections for commit privileges also apply to revert privileges.

• Commit admin-level changes on the firewall.

Click Commit, select Commit Changes Made By, and then filter by:

• Administrator—Click the adjacent link and select the administrators. This option is available only if your administrative role has the privilege to commit the changes of other administrators. Otherwise, you can commit only your own changes.

• Configuration location—In the Commit Scope, clear the check boxes for any changes that are not ready to activate.

After you finish filtering, Commit the selected changes.

• Commit admin-level changes on Panorama and push the changes to managed firewalls and Log Collectors as part of the same operation.

Select Commit > Commit and Push, select Commit Changes Made By, and then filter by:

• Administrator—Click the adjacent link and select the administrators. This option is available only if your administrative role has the privilege to commit the changes of other administrators. Otherwise, you can commit only your own changes.

• Configuration location—In the Commit Scope, clear the check boxes for any changes that are not ready to activate.

By default, the Push Scope includes all the device groups, templates, and Collector Groups that have configuration changes. However, you can Edit Selections to filter what the push operation will include.

After filtering the Commit Scope and Push Scope, Commit and Push the selected changes.
To commit changes on Panorama that are not ready to activate on firewalls and Log Collectors, select Commit > Commit to Panorama. When the changes are ready to activate, you can then select Commit > Push to Devices. When pushing configurations to managed devices, Panorama 8.0 pushes the running configuration, which is the configuration that is committed to Panorama. Therefore, you must commit changes to Panorama before pushing those changes to managed devices.

• Save admin-level changes on the firewall or Panorama.
 Select Config > Save Changes, select Save Changes Made By, and then filter by:
 • Administrator—Click the adjacent link and select the administrators. This option is available only if your administrative role has the privilege to save the changes of other administrators. Otherwise, you can save only your own changes.
 • Configuration location—in the Save Scope, clear the check boxes for any changes that are not ready to save.
 After you finish filtering, Save the selected changes.

• Revert admin-level changes on the firewall or Panorama.
 Select Config > Revert Changes, select Revert Changes Made By, and then filter by:
 • Administrator—Click the adjacent link and select the administrators. This option is available only if your administrative role has the privilege to commit and revert the changes of other administrators. Otherwise, you can revert only your own changes.
 • Configuration location—in the Revert Scope, clear the check boxes for any changes you do not want to revert.
 After you finish filtering, Revert the selected changes.
Extended SNMP Support

PAN-OS support for Simple Network Management Protocol (SNMP) now includes the following features. To access the latest MIBs, refer to SNMP MIB Files.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP Monitoring of Logging Statistics</td>
<td>You can now monitor a broader range of logging statistics, including logging rate, disk usage, retention periods, the forwarding status from individual firewalls to Panorama and external servers, and the status of firewall-to-Log Collector connections. Monitor logging statistics to plan improvements to your log collection architecture, evaluate the health of firewall and Panorama logging functions, and troubleshoot issues such as dropped logs.</td>
</tr>
<tr>
<td>The following MIBs enable monitoring for logging statistics:</td>
<td></td>
</tr>
<tr>
<td>• The new panDeviceLogging MIB displays logging statistics for each firewall.</td>
<td></td>
</tr>
<tr>
<td>• New objects in the panLogCollector MIB display logging statistics for each Log Collector.</td>
<td></td>
</tr>
<tr>
<td>SNMP Monitoring of Dedicated HA2 Interfaces</td>
<td>For firewalls deployed in a high availability (HA) configuration, you can now monitor the dedicated HA2 interfaces of firewalls, in addition to the HA1, HA2 backup, and HA3 interfaces. To see SNMP statistics for dedicated HA2 interfaces, use the IF-MIB and interfaces MIB.</td>
</tr>
<tr>
<td>Hardware IP Address Blocking</td>
<td>To see the counts of source IP addresses blocked by hardware and software, the firewall supports one updated global counter and two new global counters in the panGlobalCounters MIB:</td>
</tr>
<tr>
<td>• flow_dos_blk_num_entries shows the total sum of IP address entries on the hardware block table and Block IP list (blocked by hardware and software).</td>
<td></td>
</tr>
<tr>
<td>• flow_dos_blk_hw_entries shows the count of IP address entries on the hardware block table that were blocked by hardware.</td>
<td></td>
</tr>
<tr>
<td>• flow_dos_blk_sw_entries shows the count of IP addresses entries on the Block IP list that were blocked by software.</td>
<td></td>
</tr>
<tr>
<td>You can view the counters using the CLI, for example:</td>
<td>> show counter global name flow_dos_blk_num_entries</td>
</tr>
<tr>
<td>Packet Buffer Protection</td>
<td>This release introduces new MIBs to track the active connections per second (CPS) for virtual system (VSYS), zone, and interface. Use this information as a guide to help better configure Zone and DoS protection profiles. Each set of MIBs display the active CPS for TCP, UDP, and Other IP connections.</td>
</tr>
<tr>
<td>• VSYS—panVsystEntry, panVsysActiveTcpCps, panVsysActiveUdpCps, panVsysActiveOtherIpCps</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Zone—panZoneEntry, panZoneActiveTcpCps, panZoneActiveUdpCps, panZoneActiveOtherIpCps</td>
<td></td>
</tr>
<tr>
<td>Interface—panIfEntry, panIfActiveTcpCps, panIfActiveUdpCps, panIfActiveOtherIpCps</td>
<td></td>
</tr>
</tbody>
</table>
Panorama Features

- Traps Log Ingestion on Panorama
- Extended Support for Multiple Panorama Interfaces
- Streamlined Deployment of Software and Content Updates from Panorama
- Logging Enhancements on the Panorama Virtual Appliance
- Direct Query of PA-7000 Series Firewalls from Panorama
Traps Log Ingestion on Panorama

Panorama can now serve as a Syslog receiver that can ingest logs from the Traps ESM components using Syslog over TCP, UDP, or SSL. When you forward security events that the Traps agents report to the ESM Server on to Panorama, Panorama correlates discrete security events that occur on the endpoints with what's happening on the network to trace any suspicious or malicious activity across the endpoints and the firewalls. This integrated view gives you more context on the chronology of events and the evidence you need to detect, identify, and respond to an incident.

Panorama virtual appliance in legacy mode cannot ingest Traps logs.

STEP 1 | Define the log ingestion profile on Panorama.
1. Select **Panorama > Log Ingestion Profile**, and click **Add**.
2. Enter a **Name** for the profile.
3. Click **Add** and enter the details for the ESM Server. You can add up to four ESM Servers to a profile.
4. Enter a **Source Name**.
5. Specify the **Port** on which Panorama will be listening for syslog messages. The range is 23000 to 23999.
6. Select the **Transport** layer protocol—TCP, UDP, or SSL.
7. Select Traps_ESM for **External Log type** and 3.4.0+ from the **Version** drop-down.

As Traps log formats are updated, the updated log definitions will be available through content updates on Panorama.

STEP 2 | Attach the log ingestion profile to a Collector Group.
1. Select **Panorama > Collector Groups > Log Ingestion** and **Add** the log ingestion profile so that the Collector Group can receive logs from the ESM Server(s) listed in the profile.

If you are enabling SSL for secure syslog communication between Panorama and the ESM Server(s), you must attach an certificate for secure Syslog communication between the ESM Servers and the Managed Collectors in the Collector Group. In **Panorama > Managed Collectors > General**, select the certificate to use for **Inbound Certificate for Secure Syslog**.
2. Commit changes to Panorama and the Collector Group.

STEP 3 | Configure Panorama as a Syslog receiver on the ESM Server. Enter the Syslog Port you specified in the log ingestion profile on Panorama.

For details on the other forwarding settings, refer to the Traps Administrator's Guide.

STEP 4 | View ESM logs and correlated events on Panorama.

1. Select Monitor > External Logs > Traps ESM to view the logs ingested in to Panorama.
2. Select **Monitor > Automated Correlation Engine > Correlated Events** to view correlated events that Panorama generates when a Traps agent and the firewall have observed command and control activity from one or more infected hosts on your network.
Extended Support for Multiple Panorama Interfaces

To accommodate network segmentation and security requirements in a large-scale deployment, you can now separate the Panorama management functions from the device management and log collection functions by assigning them to separate interfaces on the M-500 and M-100 appliances. To minimize bandwidth competition that can impede the performance of Panorama, you can implement load balancing for device management and log collection by using multiple interfaces for those functions. You can further reduce the traffic load on the management (MGT) interface by selecting some other interface for deploying software and content updates to firewalls and Log Collectors. Additional interfaces on the M-100 appliance (Ethernet3) and M-500 appliance (Ethernet3, Ethernet4, and Ethernet5) are available to support multiple interfaces.

Perform the following steps to configure multiple interfaces on a high availability (HA) pair of Panorama management servers and on Dedicated Log Collectors.

STEP 1 | Configure the interfaces on the active Panorama management server—Select Panorama > Setup > Interfaces and edit each interface.

> **In an environment with high logging rates, you can assign the Device Management and Device Log Collection function to the Ethernet4 and Ethernet5 interfaces on the M-500 appliance for 10Gbps throughput. The other interfaces on the M-500 and M-100 appliances support only 1Gbps.**

STEP 2 | Configure each Log Collector to connect with a Panorama interface that has **Device Management and Device Log Collection** enabled—On the active Panorama, select Panorama > Managed Collectors, edit the Log Collector, and enter the IP addresses of interfaces on the:

- Active Panorama (Panorama Server IP)
• Passive Panorama (Panorama Server IP 2)

To support a segmented network, you can connect the Log Collectors in each subnetwork to separate Panorama interfaces on each HA peer.

STEP 3 | Enable connectivity between the Panorama management servers and Log Collectors—Access each Log Collector CLI and run the following commands, where `<IPaddress1>` is for the active Panorama and `<IPaddress2>` is for the passive Panorama. The IP addresses must be the same as those you configured in the previous step.

```
> configure
# set deviceconfig system panorama-server <IPaddress1> panorama-server-2 <IPaddress2>
# commit
```

STEP 4 | Configure an interface on the passive Panorama management server to deploy updates in case the active Panorama fails over—On the passive Panorama, select Panorama > Setup > Interfaces, edit the interface, and select Device Deployment.

STEP 5 | Configure the interfaces that the Log Collectors will use to collect logs from firewalls and communicate with other Log Collectors—On the active Panorama, select Panorama > Managed Collectors, edit the Log Collector, assign the Device Log Collection function to one or more interfaces, and assign the Collector Group Communication function to one interface.

In an environment with high logging rates, you can assign the Device Log Collection function to the Ethernet4 and Ethernet5 interfaces on the M-500 appliance for 10Gbps throughput.

STEP 6 | On the active Panorama, select Commit > Commit and Push to activate your changes on Panorama and push the changes to Collector Groups.

STEP 7 | Configure each firewall to connect with a Panorama interface that has Device Management and Device Log Collection enabled—On the active Panorama, select Device > Setup > Management, select the Template that the firewalls are assigned to, edit the Panorama Settings, and enter the IP addresses of interfaces on the:

• Active Panorama (first Panorama Servers field)
• Passive Panorama (second Panorama Servers field)

To support a segmented network, you can connect the firewalls in each subnetwork to separate Panorama interfaces on each HA peer.

STEP 8 | On the active Panorama, select Commit > Commit and Push to activate your changes on Panorama and push the template changes to firewalls.
Streamlined Deployment of Software and Content Updates from Panorama

Instead of pushing software and content updates to one firewall or Log Collector at a time, Panorama now notifies the devices when updates are available and the devices then retrieve the updates in parallel. This enables Panorama to deploy software and content updates to managed devices more quickly. The procedures to deploy updates have not changed (see Upgrade Firewalls Using Panorama and Deploy an Update to Log Collectors) but you must leave port 28443 open on Panorama for firewalls and Log Collectors to retrieve the updates. Only firewalls that run PAN-OS 8.0 and Log Collectors that run Panorama 8.0 will retrieve updates; for devices running earlier releases, Panorama still pushes the entire update package instead of sending notifications.

If you want to reserve the management (MGT) interface for management traffic and log collection, you can use a separate interface for the traffic associated with deploying updates (see Extended Support for Multiple Panorama Interfaces).
Logging Enhancements on the Panorama Virtual Appliance

You can now create a Log Collector that runs locally on the Panorama virtual appliance. Because the local Log Collector supports multiple virtual logging disks, you can increase log storage as needed while preserving existing logs. The local Log Collector supports up to 12 virtual disks for 24TB of log storage on a single Panorama virtual appliance and up to 48TB on a high availability (HA) pair. Without a local Log Collector, Panorama supports only one logging disk with up to 8TB of storage.

You cannot deploy the Panorama virtual appliance as a Dedicated Log Collector.

The virtual appliance supports NFS log storage only in Legacy mode, not in Panorama mode. After switching to Panorama mode, you must migrate the logs that are in the NFS storage to the virtual disks on the local Log Collector.

After you upgrade to Panorama 8.0, the Panorama virtual appliance will be in Legacy mode by default. To enable support for a local Log Collector, you must first increase resources on the appliance and switch it to Panorama mode. The minimum resources include a larger system disk (81GB), more CPUs and memory based on the log storage capacity, and an additional virtual logging disk that has at least as much capacity as is used for logs in Legacy mode.

If Panorama is deployed in an high availability (HA) configuration, perform the following steps on the secondary peer first and then on the primary peer.

STEP 1 | Determine which system resources you need to increase by accessing the Panorama CLI and running the following command:

```bash
> request system system-mode panorama
```

STEP 2 | Use your VMware ESXi vSphere Client to increase the memory and CPUs and to add a new system disk.

STEP 3 | Use the Panorama CLI to copy the data from the original system disk to the new system disk:

```bash
> request system clone-system-disk target sdb
```

STEP 4 | Use the vSphere Client to remove Hard Disk 1 that is attached to Virtual Device Node 0:0.

STEP 5 | Assign the cloned Hard Disk from step 3 to Virtual Device Node 0:0.

STEP 6 | Use the Panorama CLI to switch from Legacy mode to Panorama mode.

```bash
> request system system-mode panorama
```

STEP 7 | (HA only) Repeat steps 1 through 6 on the primary Panorama to switch it to Panorama mode. This step triggers failover. After switching the mode, restore the primary Panorama to the active HA state and ensure both HA peers are functional.
STEP 8 | Use the Panorama CLI to migrate existing logs to the new virtual logging disk. In an HA configuration, perform this only on the primary Panorama.

```
> request logdb migrate vm start
```

STEP 9 | To verify that the existing logs are available, log in to the Panorama web interface, select Panorama > Monitor, select a log type that you know matches some existing logs (for example, Panorama > Monitor > System), and verify that the logs display.
Direct Query of PA-7000 Series Firewalls from Panorama

Because of the new support for PA-7000 Series Firewall Log Forwarding to Panorama, Panorama no longer treats the PA-7000 Series firewalls it manages as Log Collectors. If you have not configured the PA-7000 Series firewalls to forward logs to Panorama, all logs a managed PA-7000 Series firewall generates are only viewable from the local firewall and not from Panorama. Beginning with PAN-OS 8.0.8, if you do not yet have a log forwarding infrastructure that is capable of handling the logging rate and volume from the PA-7000 Series firewalls, you can now enable Panorama to directly query PA-7000 Series firewalls when monitoring logs.

To use this new capability, both the PA-7000 Series firewalls and Panorama must be running PAN-OS 8.0.8 or a later release.

With this new functionality available in PAN-OS 8.0.8 and later releases, Panorama now provides two options for monitoring logs and running reports for managed PA-7000 Series firewalls:

• **(New) Enable Panorama to directly query managed PA-7000 Series firewalls when monitoring logs.**

 To enable Panorama to directly query the PA-7000 Series firewalls without requiring the firewalls to forward logs, you must enter the following command from the Panorama CLI:

  ```
  admin@panorama> debug reportd send-request-to-7k yes
  ```

 After running the command, you will be able to view logs for managed PA-7000 Series firewalls on the Panorama Monitor tab. Additionally, as with all managed devices, you can also generate reports that include PA-7000 Series log data by selecting Remote Device Data as the Data Source.

• **Configure the managed PA-7000 Series firewalls to forward logs to Panorama.**

 Before enabling your PA-7000 Series firewalls to forward logs to Panorama, make sure you have a logging infrastructure that will handle the logging rate and volume. Refer to the table in Panorama Models to determine if you have the right logging capacity. Additionally, if you have enabled Panorama to directly query PA-7000 Series firewalls, you must disable this before you enable log forwarding by entering the following command from the Panorama CLI:

  ```
  > debug reportd send-request-to-7k
  no
  ```

 After you have enabled your PA-7000 Series firewalls to forward logs to Panorama, the PA-7000 Series log data will be aggregated within all Panorama views: Application Command Center (ACC), the App-Scope, the log viewer (Monitor tab), and the standard, customizable reporting options on Panorama.
Content Inspection Features

> Credential Phishing Prevention
> Telemetry and Threat Intelligence Sharing
> Palo Alto Networks Malicious IP Address Feeds
> Enhanced Coverage for Command and Control (C2) Traffic
> Data Filtering Support for Data Loss Prevention (DLP) Solutions
> External Dynamic List Enhancements
> New Scheduling Options for Application and Threat Content Updates
> Five-Minute Updates for PAN-DB Malware and Phishing URL Categories
> Globally Unique Threat IDs
> Predefined File Blocking Profiles
> GPRS Tunneling Protocol (GTP) Security
Credential Phishing Prevention

Phishing sites are sites that attackers disguise as legitimate websites with the aim to steal user information, especially the user credentials that provide access to your network. When a phishing email enters a network, it takes just a single user to click the link and enter credentials to set a breach in motion. You can now identify and prevent in-progress phishing attacks by controlling sites to which users can submit corporate credentials based on the site’s URL category. This allows you to block users from submitting credentials to untrusted sites while allowing users to continue to submit credentials to corporate and sanctioned sites.

Credential phishing prevention works by scanning username and password submissions to websites and comparing those submissions against valid corporate credentials. You can choose what websites you want to either allow, alert on, or block corporate credential submissions to based on the URL category of the website. Alternatively, you can present a page that warns users against submitting credentials to sites classified in certain URL categories. This gives you the opportunity to educate users against reusing corporate credentials, even on legitimate, non-phishing sites. In the event that corporate credentials are compromised, this feature allows you to identify the user who submitted credentials so that you can remediate.

Take the following steps to prevent phishing attempts by controlling the sites to which your users can submit credentials.

STEP 1 | Decide what user credential detection method you want the firewall to use to detect corporate credential submissions and configure User-ID as required to support the selected method.

Each of the Methods to Check for Corporate Credential Submissions requires a different User-ID configuration to check for corporate credential submissions:

- If you plan to use the group mapping method, which detects whether a user is submitting a valid corporate username, Map Users to Groups.
- If you plan to use the IP user mapping method, which detects whether a user is submitting a valid corporate username that matches the username of the user logged into the source IP address of the session, Map IP Addresses to Users.
- If you plan to use the domain credential filter method, which detects whether a user is submitting a valid username and password and that those credentials match the user who is logged in to the source IP address of the session, Configure Credential Detection with the Windows-based UserIDAgent and Map IP Addresses to Users.

STEP 2 | Configure URL Filtering to detect corporate credential submissions to websites that are in allowed URL categories.

If you have not done so already, configure a best practice URL Filtering profile to ensure protection against URLs that have been observed hosting malware or exploitive content.

1. Select Objects > Security Profiles > URL Filtering and Add or modify a URL Filtering profile.
2. On the User Credential Detection tab, select one of the Methods to Check for Corporate Credential Submissions:
 - Use IP User Mapping—Checks if username submissions match the user logged into the source IP address of the session.
 - Use Domain Credential Filter—Checks for valid corporate usernames and password submissions and verifies that the submitted credentials match the user logged into the source IP address of the session.
- **Use Group Mapping**—Checks that submitted usernames match a username in the user-to-group mapping table. With group mapping, you can apply credential detection to any part of the directory, or limit it to selected groups that have access to your most sensitive resources, such as IT.

3. Set the **Valid Username Detected Log Severity** the firewall uses to log detection of corporate credential submissions. By default, the firewall logs these events as medium severity.

STEP 3 | Block (or alert) on credential submissions to allowed sites.

The firewall automatically skips checking credential submissions on sites that have never been observed hosting malware or phishing attacks to ensure the best performance even if you enable checks in the corresponding category. The list of sites on which the firewall will skip credential checking is automatically updated via Application and Threat content updates.

1. On the Categories tab, for each Category to which Site Access is allowed, select how you want to treat User Credential Submissions:
 - alert—Allow users to submit credentials to the website, but generate a URL Filtering log each time a user submits credentials to sites in this URL category.
 - allow—(default) Allow users to submit credentials to the website.
 - block—Block users from submitting credentials to the website and display a response page.
 - continue—Present a response page to users that requires them to click Continue to continue with credential submission.

2. Select OK to save the URL Filtering profile.

STEP 4 | Apply the updated URL filtering and credential detection settings to the Security policy rules that allow web traffic.

1. Select Policies > Security and Add or modify a Security policy rule.
2. Select Actions and set the Profile Type to Profiles.
3. Select the new or updated URL Filtering profile to attach it to the Security policy rule.
4. Select OK to save the Security policy rule.

STEP 5 | Commit the URL Filtering profile and Security policy rule updates.

STEP 6 | Monitor credential submissions the firewall detects.

- A new ACC widget provides a view into the number of users who have visited malware and phishing sites. Select ACC > Hosts Visiting Malicious URLs.

Select Monitor > Logs > URL Filtering.

The new **Credential Detected** column indicates events where the firewall detected a HTTP post request that included a valid credential:

<table>
<thead>
<tr>
<th>Category</th>
<th>Application</th>
<th>Action</th>
<th>Credential Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>web-browsing</td>
<td>block-uf</td>
<td>yes</td>
</tr>
<tr>
<td>EDL-shared-URL</td>
<td>web-browsing</td>
<td>block-uf</td>
<td>yes</td>
</tr>
<tr>
<td>malware</td>
<td>web-browsing</td>
<td>block-uf</td>
<td>yes</td>
</tr>
<tr>
<td>EDL-shared-URL</td>
<td>web-browsing</td>
<td>block-uf</td>
<td>yes</td>
</tr>
<tr>
<td>malware</td>
<td>web-browsing</td>
<td>block-uf</td>
<td>yes</td>
</tr>
</tbody>
</table>
Log entry details also indicate credential submissions:
Telemetry and Threat Intelligence Sharing

You can now participate in telemetry, a community-driven approach to threat prevention. Telemetry allows the firewall to periodically collect and share information about applications, threats, and device health with Palo Alto Networks. Sharing threat intelligence provides the following benefits:

- Enhanced intrusion prevention system (IPS) and spyware signatures delivered to you and other customers worldwide. For example, when a threat event triggers vulnerability or spyware signatures, the firewall shares the URLs associated with the threat with the Palo Alto Networks threat research team, so they can properly classify the URLs as malicious.
- Rapid testing and evaluation of experimental threat signatures with no impact to your network, so that critical threat prevention signatures can be released to all customers faster.
- Improved accuracy and malware detection abilities within PAN-DB URL filtering, DNS-based command-and-control (C2) signatures, and WildFire.

You can choose which telemetry data to share with Palo Alto Networks. The firewall collects the data from your firewall logs; the combination of log types and log data depend on the Telemetry settings you enable.

An enhancement of the Statistics Service feature in firewalls running PAN-OS 7.1 and earlier, telemetry is an opt-in feature. Palo Alto Networks does not share your telemetry data with other customers or third-party organizations.

STEP 1 | Select Device > Setup > Telemetry, and edit the Telemetry settings.

STEP 2 | Select the telemetry data you want to share with Palo Alto Networks. For more specific descriptions of this data, see What Telemetry Data Does the Firewall Collect?

If you have previously configured your firewall to share data through the Statistics Service (PAN-OS 7.1), the Telemetry settings that match the Statistics Service settings are selected and enabled by default.

STEP 3 | View the telemetry data (or examples of the data) that the firewall collects. See Enable Threat Intelligence Sharing.
STEP 4 | Click OK and Commit your changes.
Palo Alto Networks Malicious IP Address Feeds

With an active Threat Prevention subscription, Palo Alto Networks now provides two malicious IP address feeds. These IP address feeds allow you to leverage the latest Palo Alto Networks threat intelligence when blocking traffic by IP address.

- **Palo Alto Networks - Known malicious IP addresses**—Contains IP addresses that Palo Alto Networks has verified as malicious.
- **Palo Alto Networks - High risk IP addresses**—Contains malicious IP addresses from threat advisories issued by trusted third-party organizations.

Palo Alto Networks delivers updated versions of the IP address feeds as part of the daily antivirus content updates for the firewall. Entries from the most recent versions of the feeds replace the entries from older versions. The feeds are predefined, which means that you cannot modify their contents. However, you can create a new external dynamic list that uses either of the predefined IP address feeds as a source. This gives you the flexibility of excluding IP addresses from the feed, if necessary.

Assess your organization’s threat prevention strategy when referencing the Palo Alto Networks malicious and high-risk IP address feeds in security policy rules. Palo Alto Networks employs a variety of safety checks to prevent shared or legitimate IP addresses from being added to the known malicious IP address feed; however, it's possible for an IP address in the feed to be mapped to multiple servers, some of which might not cause malicious behavior. Furthermore, while the high risk IP address feed comes from trusted third-party sources, Palo Alto Networks does not regulate the contents of this feed.

To monitor traffic associated with the known malicious or high-risk IP address feed, create a security policy rule reserved for blocking traffic from the feed, then filter the Traffic log by the rule you created.

STEP 1 Confirm that the firewall can access the Palo Alto Networks malicious IP address feeds.

- **Confirm that you have activated your Threat Prevention subscription on the firewall.** Select Device > Licenses to check that your subscription is valid.
- **Confirm that you have downloaded and installed the latest Antivirus version on your firewall.**

STEP 2 View the contents of the Palo Alto Networks malicious IP address feeds directly on the firewall.

View external dynamic list entries for the following malicious IP address feeds:

- **Palo Alto Networks - High risk IP addresses**
- **Palo Alto Networks - Known malicious IP addresses**

Filter the list to check that it does not contain IP addresses you need to access.
If you have an active AutoFocus subscription, hover over any of the IP addresses in the list to open the drop-down and view an AutoFocus Intelligence Summary for it.

You cannot delete, clone, edit, or exclude IP addresses from a Palo Alto Networks malicious IP address feed.

STEP 3 | (Optional) Create a new external dynamic list that uses a Palo Alto Networks IP address feed as a source.

- In the Type drop-down, select **Predefined IP List**.
- Select a Palo Alto Networks IP address feed to use as a **Source** for your external dynamic list.

- **(Optional)** Exclude entries from the external dynamic list (new in PAN-OS 8.0).

The firewall updates the custom external dynamic list you just created each time it receives an update for the Palo Alto Networks IP address feed, but your list exceptions are preserved.

STEP 4 | Use a Palo Alto Networks malicious IP address feed to block network traffic.

Enforce policy on entries in an external dynamic list. Use the known malicious or high-risk IP address feed (or custom list based on either of these feeds) as a source or destination address object in a Security policy rule.
Enhanced Coverage for Command and Control (C2) Traffic

Command-and-control (C2) describes when a compromised system is surreptitiously communicating with an attacker’s remote server to receive malicious commands or exfiltrate data. A new type of signature that detects C2 traffic is now generated automatically. While C2 protection is not new, previous signatures looked for an exact match to domain names in DNS queries or full URLs in HTTP client requests to identify a C2 host. The new, automatically-generated C2 signatures detect certain patterns in C2 traffic instead of the C2 host. This enables the firewall to provide more accurate, timely, and robust C2 detection even when the C2 host is unknown or changes rapidly.

To benefit from the enhanced C2 protection, you’ll need a Threat Prevention license—the new, automated C2 signatures are made available with hourly Antivirus updates, and further C2 protection continues to be delivered with the Applications and Threats updates. Additionally, both the Palo Alto Networks Threat Vault and AutoFocus are integrated with the firewall, and you can leverage these resources to immediately access more information about C2 attacks the firewall detects.

STEP 1 | Select **Device** > **Licenses** and confirm that the firewall Threat Prevention license is active.

STEP 2 | Select **Device** > **Dynamic Updates** and enable the firewall to get the latest Antivirus updates every hour.

The extended, automated C2 protection this feature introduces is made available with the latest Antivirus updates; however, Applications and Threats content updates also continue to provide C2 protection.

To enable full coverage for C2 attacks, make sure that you also enable the firewall to check for the latest Applications and Threats content every 30 minutes (see New Scheduling Options for Application and Threat Content Updates).

STEP 3 | Enable the firewall to block C2 activity it detects.

1. Select **Objects** > **Security Profiles** > **Antivirus** and Add or modify an Antivirus profile.

 The default action for C2 signatures is Reset Client; this means that when the firewall detects C2 communication, it resets the client-side TCP connection or drops the UDP connection.

 Setting up an Antivirus profile defines how you want the firewall to treat C2 attacks that match the new automated C2 signatures—also set up an Anti-Spyware profile to make sure that the firewall is blocking all C2 attacks.

2. Attach the Antivirus profile (and Anti-Spyware profile) to a security policy rule:

 1. Select **Policies** > **Security** and Add or modify a security policy rule.
 2. Select **Actions** and in the Profile Settings, set the Profile Type to **Profiles**.
 3. Select the Anti-Spyware profile you want to apply to traffic matched to this rule.
 4. Click OK.

STEP 4 | Find out more about C2 activity the firewall detects.

- Monitor C2 activity:

 Select **Monitor** > **Logs** > **Threat**. Events the firewall detected based on the automatically-generated spyware signatures are logged with the Threat Category autogen and the Type spyware. Add
the following filter to show only log entries for these events: (subtype eq spyware) and (category-of-threatid eq autogen).

- Find out more about a specific C2 event:
- Select the spyglass icon to view in-depth details for the logged event.
- (New) Hover over a threat Name and click Exception to learn more about the type of threat detected and to see if the signature that detected the threat is configured as an exception to certain security policy rules.

<table>
<thead>
<tr>
<th>Threat Category</th>
<th>Type</th>
<th>ID</th>
<th>Content Version</th>
<th>Name</th>
<th>From Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>autogen</td>
<td>spyware</td>
<td>140398582</td>
<td>Antivirus-934-1065</td>
<td>Wgeneric.js</td>
<td>Exception</td>
</tr>
<tr>
<td>autogen</td>
<td>spyware</td>
<td>140397723</td>
<td>Antivirus-934-1065</td>
<td>minimal.exe</td>
<td>trust</td>
</tr>
</tbody>
</table>

Learn more about how you can use Globally Unique Threat IDs to gain context for a threat signature or create a threat exception.

- Hover over an IP address, URL, or domain to search for that artifact in AutoFocus—AutoFocus can reveal if the artifact is frequently found with malware, if it is associated with malware variants, and whether the artifact is targeted or pervasive throughout your network, industry, or globally. This feature requires an AutoFocus license.
Data Filtering Support for Data Loss Prevention (DLP) Solutions

Data filtering is enhanced to work with third-party, endpoint DLP solutions that populate file properties to indicate sensitive content, enabling the firewall to enforce your DLP policy. To better secure this confidential data, you can now enable data filtering to identify the file properties and values set by a DLP solution and then log or block the files the data filtering profile identifies.

While this feature is supported in previous release versions, it required you to use regular expressions to define the data patterns on which you want the firewall to filter. This data filtering enhancement introduces a more simplified and intuitive workflow to prevent confidential information from leaving your network, including:

- Built-in settings allow you to easily enable the firewall to scan for file properties and specific, associated values. If you’re using a DLP solution, you can populate these settings based on your DLP policy.
- New predefined data patterns enable you to quickly set up social security and credit card number detection.

Data pattern objects previously defined to filter for credit card numbers, social security numbers, and regular expression patterns will look a little different after the upgrade to PAN-OS 8.0.

- First Look at New and Updated Data Filtering Options
- Align Data Filtering with a DLP Solution

First Look at New and Updated Data Filtering Options

In previous release versions, a single data pattern object could contain different types of data patterns, including credit card and social security number patterns and custom patterns. Now, data pattern objects can be one of three types:

- **(New and Improved) Predefined Pattern**—Filter for credit card and social security numbers (with or without dashes) using predefined patterns. While the option to filter for credit card and social security numbers existed in previous release versions, the new predefined patterns make this feature easy to use.
- **Regular Expression**—Filter for a string of characters.
- **(New and Improved) File Properties**—Filter for file properties and values based on file type. While the option to use regular expression patterns to filter for file properties is supported with earlier release versions, the new built-in file property options make this feature easy to use.
Additionally, data pattern objects configured before the upgrade to PAN-OS 8.0 are preserved and are enforced with your security policy just as they were before the upgrade; however, the migrated data pattern objects are displayed differently. A single data pattern object that contains more than one type of pattern becomes two separate data pattern objects in PAN-OS 8.0:

In the example above, the PAN-OS 7.1 data pattern object pattern1 includes credit card and social security number patterns and regular expression patterns. After the upgrade to PAN-OS 8.0, the original data pattern object is replaced by two separate objects based on the data pattern types: a predefined pattern object with the name pattern1-P and a regular expression object with the name pattern1-R.

A P added to the end of the data pattern name indicates a predefined data pattern that was configured before the upgrade to PAN-OS 8.0, and an R added to the end of the pattern name indicates a regular expression data pattern that was configured before the upgrade to PAN-OS 8.0.

Align Data Filtering with a DLP Solution

If you are using a DLP solution to add file properties to documents in order to mark those documents as confidential, you can use the new built-in file property settings to configure the firewall to block those confidential documents from leaving your network.

Take the following steps to use the new settings to enable data filtering based on file properties (previous release versions required you to create regular expression data patterns to enable the same functionality).
STEP 1 | Define a new data pattern object to detect file properties.
1. Select Objects > Custom Objects > Data Patterns and Add a new object.
2. Set the Pattern Type to File Properties.
3. Add a new rule to the data pattern object, and give that rule a descriptive Name.
4. Select the File Type and based on the file type you choose, also select the File Property that you want scan for a specific value.
5. Enter the specific Property Value that you want the firewall to detect.
6. Click OK to save the data pattern.

STEP 2 | Add the data pattern object to a data filtering profile.
1. Select Objects > Security Profiles > Data Filtering and Add or modify a data filtering profile.
2. Add a new profile rule and select the Data Pattern you created in step 1.
3. Specify Applications, File Types, and what Direction of traffic (upload or download) you want to filter based on the data pattern. "The file type you select must be the same file type you defined for the data pattern in step 1, or it must be a file type that includes the data pattern file type. For example, you could define both the data pattern object and the data filtering profile to scan all Microsoft Office documents. Or, you could define the data pattern object to match to only Microsoft PowerPoint Presentations, while the data filtering profile scans all Microsoft Office documents."
4. Set the Alert Threshold to specify the number of times the data pattern must be detected in a file to trigger an alert.
5. Set the Block Threshold to block files that contain at least this many instances of the data pattern.
6. Set the Log Severity recorded for files that match this rule.
7. Click OK to save the data filtering profile.

STEP 3 | Apply the data filtering settings to traffic.
1. Select Policies > Security and Add or modify a security policy rule.
2. Select Actions and set the Profile Type to Profiles.
3. Attach the Data Filtering profile you created in step 2 to the security policy rule.
4. Click OK.

STEP 4 | (Recommended) Prevent web browsers from resuming sessions that the firewall has terminated. "This option ensures that when the firewall detects and then drops a sensitive file, a web browser cannot resume the session in an attempt to retrieve the file."
1. Select Device > Setup > Content-ID and edit Content-ID Settings.
2. Clear the Allow HTTP header range option.
3. Click OK.

STEP 5 | Monitor files that the firewall is filtering.
Select Monitor > Data Filtering to view the files that the firewall has detected and blocked based on your data filtering settings.
External Dynamic List Enhancements

An external dynamic list is a text file of IP addresses, domains, or URLs hosted on an external web server. You can configure the firewall to periodically import an external dynamic list and block or allow traffic based on its contents. The following enhancements provide more visibility into the contents of an external dynamic list and the list entries currently used in policy. External dynamic lists also now give you the flexibility to choose list entries to exclude before using a list to enforce policy, while new authentication measures allow you to use external dynamic lists more securely. Lastly, you can now protect your network against malicious hosts by using new dynamic IP address lists that Palo Alto Networks maintains.

• Use one of the Palo Alto Networks Malicious IP Address Feeds as a source for the external dynamic list.
 1. Select Objects > External Dynamic List.
 2. Click Add.
 3. When setting the details for the new external dynamic list, select the new external dynamic list Type Predefined IP List.

 4. Select a Palo Alto Networks malicious IP address feed as the list Source.
 5. Click OK.

• Enable Authentication for External Dynamic Lists.

 Server authentication ensures that your firewall retrieves external dynamic lists from valid sources. Client authentication enables you to use external dynamic lists from more secure sources that require a username and password to restrict list access.

 1. Select Objects > External Dynamic List.
 2. Click on an external dynamic list to view the list settings.
 3. Select a Certificate Profile for authenticating the web server that hosts the external dynamic list.
 4. If the external dynamic list source requires a username and password to access the list, select Client Authentication and enter login credentials for the list.
5. Click **OK**.

- **View external dynamic list entries directly on the firewall.**
 1. Select **Objects > External Dynamic List.**
 2. Click on an external dynamic list to view the list settings.
 3. Click **List Entries and Exceptions** and view the entries from the most recent version of the list that the firewall retrieved.

![External Dynamic Lists](image)

View AutoFocus threat intelligence for an external dynamic list entry to assess its pervasiveness and risk in your network. Click the drop-down next to a list entry, and click **AutoFocus**. To use this feature, you must have an active AutoFocus subscription and enable AutoFocus threat intelligence on the firewall.

- **Exclude entries from an external dynamic list.**
 This is useful if you want to block or allow traffic based on some but not all of the entries in a list.
 1. **View external dynamic list entries directly on the firewall.**
2. Add an entry to the Manual Exceptions list.

1. Select a list entry and click Submit (Submit).
2. Click Add and manually enter a value (refer to formatting guidelines for an external dynamic list). A manual exception must match a list entry exactly. For example, if one of the entries in an external dynamic list is the IP address range 1.1.1.1-3.3.3.3 and you manually enter 2.2.2.2 as an exception, the firewall will not consider it an exception unless 2.2.2.2 is also a list entry.

You can add up to 100 exceptions to an external dynamic list. You cannot save your changes to the external dynamic list if you have duplicate entries in the list of exceptions. The firewall marks duplicate entries with a red underline.

- Check the number of external dynamic list entries used in policy to make sure you don’t go over the firewall limit.

In PAN-OS 8.0, you can reference a total of 30 external dynamic lists with unique sources across all security policy rules. In addition, external dynamic list entries (IP addresses, domain, and URLs) now only count toward the maximum number supported by the firewall if they belong to lists referenced in Security policy rules you enforce on the firewall.

1. Select Objects > External Dynamic List.
2. Click List Capacities.

Compare how many IP addresses, domains, and URLs are currently used in policy against the total number of entries that the firewall supports for each list type. Since these values vary from firewall to firewall, the List Capacities window is not available on Panorama.

Predefined IPs displays the number of IP addresses in the most recent Palo Alto Networks Malicious IP Address Feeds saved to your firewall, even if they are not used in policy.

- Use Global Find to check if a domain, IP address, or URL belongs to one or more external dynamic lists used in policy.

This feature is useful for determining which external dynamic list (referenced in a Security policy rule) is causing the firewall to block or allow a certain domain, IP address, or URL. You can use Global Find from any page on the firewall.

1. Click Search.
2. Enter an IP address, domain, or URL, and click the spyglass to start the search.
If you enter an IP address that falls within an IP address range entry in an external dynamic list, Global Find will not associate the IP address with the external dynamic list. For example, if you search for the IP address 2.2.2.2 and there is an external dynamic list with the entry 1.1.1.1-3.3.3.3, the search results for 2.2.2.2 do not include that external dynamic list.

3. If the IP address, domain, or URL is in an external dynamic list that is used in policy, the search results include the new category **External Dynamic Lists**. Expand this category to view which external dynamic lists contain the value you entered.

![Example Image](image.png)

If an IP address, domain, or URL is a list exception and you search for it in Global Find, the search results still include the external dynamic list(s) from which it is excluded.
New Scheduling Options for Application and Threat Content Updates

The firewall can now check for the latest App-ID, vulnerability protection, and anti-spyware signatures every 30 minutes or hourly, in addition to being able to check for these updates daily and weekly. These new scheduling options mean that the firewall can retrieve Applications and Threats content updates within as little as 30 minutes of when the updates are made available. This enables more immediate coverage for newly-discovered threats and strengthens safe enablement for updated and newly-defined applications.

You can also use Panorama to set the schedule for managed firewalls to retrieve Applications and Threats content updates. Managed firewalls that are not upgraded to PAN-OS 8.0 will convert the 30-minute or hourly schedule to a daily schedule (and by default, they will check for new content updates at 3 AM daily).

STEP 1 | Confirm that the Threat Prevention license is active on the firewall.

If you do not have a Threat Prevention license, but still want to the firewall to check for Application updates every 30 minutes, continue to step 2.

Select **Device > Licenses** and check that the Threat Prevention license is active.

STEP 2 | Set the schedule for the firewall to retrieve Applications and Threats updates.

1. Select **Device > Dynamic Updates**.
2. Select the schedule link for Applications and Threats.
3. Set the **Recurrence** to **Every 30 Minutes** or **Hourly** for the firewall to check for new Applications and Threats every half hour or every hour.

4. Click **OK** to save the new Applications and Threats update schedule.
Five-Minute Updates for PAN-DB Malware and Phishing URL Categories

The Malware and Phishing URL categories in the PAN-DB cloud are now updated every five minutes based on the latest information from the Threat Intelligence cloud. Firewalls with an active PAN-DB URL Filtering license automatically benefit from these more frequent URL category updates following the upgrade to PAN-OS 8.0.

With PAN-DB URL Filtering, the firewall holds a cache of URLs and their categorizations locally; when a user accesses a website that is not in the local cache or if the local cache entry has expired, the firewall queries the PAN-DB cloud to determine the URL category of the website. At this time, the firewall will get the very latest categorization for the URL from the PAN-DB cloud, and will add the new URL to the local cache. To ensure that the firewall is configured to then block access to malware and phishing sites based on the latest URL category updates, take the following steps.

STEP 1 | Enable PAN-DB URL Filtering.

This includes obtaining and installing a PAN-DB URL Filtering license and activating URL filtering.

STEP 2 | Restrict access to malicious and phishing sites.

1. Select **Objects > Security Profiles > URL Filtering** and **Add** or modify a URL filtering profile.

 Configure a best practice URL Filtering profile to ensure protection against URLs that have been observed hosting malware or exploitive content.

 - Select **Categories**.
 - Check that the Site Access for the malware and phishing categories is set to **block**.
 - Click **OK** to save the profile.

STEP 3 | (Optional) You can also enable the new Credential Phishing Prevention feature to prevent users from submitting credentials to untrusted sites, without blocking their access to those sites.
Globally Unique Threat IDs

All Palo Alto Networks threat signatures now have permanent, globally unique IDs that you can use to look up threat signature information and create permanent threat exceptions. While globally unique IDs are already provided for vulnerability and spyware signatures, this release extends unique IDs to antivirus and DNS signatures. Previously, antivirus and DNS signature IDs were sometimes reused due to the large number of signatures generated on a daily basis and some IDs matched to more than one signature. Now, because you must configure threat exceptions based on threat IDs, globally unique threat IDs ensure that these exceptions remain permanently and correctly enforced.

Additionally, PAN-OS 8.0 introduces new threat categories to classify different types of threat signatures along with the new threat IDs. You can use the threat categories to filter both firewall logs and the ACC for certain types of threats and to build custom reports.

- Learn More About Threat Signatures using Threat IDs
- New Threat Categories and How to Use Them

If a signature has been disabled, the signature UTID might be reused for a new signature.

Review the content update release notes for notifications regarding new and disabled signatures. Signatures might disabled in cases where: the activity the signature detects has fallen out of use by attackers, the signature generated significant false positives, or the signature was consolidated with other similar signatures into a single signature (signature optimization).

Review the PAN-OS 8.0 upgrade and downgrade considerations for this feature before you get started:

- Because antivirus and DNS signatures now have globally unique IDs, the threat ID ranges that existed for these signatures in previous release versions no longer apply. If you have used antivirus and DNS threat ID ranges to build any custom logic, to create custom reports, or as part of an integration with a security information and event management (SIEM) solution, you should revisit those areas to see if you can instead leverage the new Threat categories.
- Threat exceptions configured in PAN-OS 7.1 are not migrated with the upgrade to PAN-OS 8.0. Instead, you can now use the new, permanent, and unique IDs to New Threat Categories and How to Use Them.

Learn More About Threat Signatures using Threat IDs

The firewall Threat logs record all threats the firewall detects based on threat signatures and the ACC displays an overview of the top threats on your network. Each event the firewall records includes an ID that identifies the associated threat signature.

Now that all threat IDs are unique, you can use the threat ID found with a Threat log or ACC entry to:

- Easily check if a threat signature is configured as an exception to your security policy.

What is a threat exception?

Palo Alto Networks defines a default action (such as block or alert) for threat signatures; unless otherwise specified, the firewall enforces threat signatures based on the default action. However, you can create a threat exception to either exclude a threat signature from enforcement or to modify how the firewall enforces that specific signature. Learn more about and create threat exceptions.
• Find the latest Threat Vault information about a specific threat. Because the Threat Vault is now integrated with the firewall, you can view threat details directly in the firewall context or launch a Threat Vault search in a new browser window for a threat the firewall logged.

STEP 1 | Confirm the firewall is connected to the Threat Vault.

The firewall is now enabled to access the Threat Vault by default in order to gather the latest information about detected threats. To confirm that threat vault access is enabled after upgrading to PAN-OS 8.0, select Device > Setup > Management and edit the Logging and Reporting setting to Enable Threat Vault Access.

STEP 2 | Find the threat ID for threats the firewall detects:

- To see each threat event the firewall detects based on threat signatures, select Monitor > Logs > Threat. You can find the ID for a threat entry listed in the ID column, or select the log entry to view log details, including the Threat ID.
- To see an overview of top threats on the network, select ACC > Threat Activity and take a look at the Threat Activity widget. The ID column displays the threat ID for each threat displayed.
- To see details for threats that you can configure as threat exceptions (meaning, the firewall enforces the threat differently than the default action defined for the threat signature), select Objects > Security Profiles > Anti-Spyware/Vulnerability Protection. Add or modify a profile and click the Exceptions tab to view configured exceptions. If no exceptions are configured, you can filter for threat signatures or select Show all signatures.

STEP 3 | Hover over a Threat Name or the threat ID and click Exception to review both the threat details and how the firewall is configured to enforce the threat.

For example, find out more about a top threat charted on the ACC:
STEP 4 | Review the latest Threat Details for the threat and launch a Threat Vault search based on the threat ID:

- Threat details displayed include the latest Threat Vault information for the threat, resources you can use to learn more about the threat, and CVEs associated with the threat.
- Select View in Threat Vault to open a Threat Vault search in a new window and look up the latest information the Palo Alto Networks threat database has for this threat signature.

STEP 5 | Check if a threat signature is configured as an exception to your security policy:

- If the Used in current security rule column is clear, the firewall is enforcing the threat based on the recommended default signature action (for example, block or alert).
- A checkmark anywhere in the Used in current security rule column indicates that a security policy rule is configured to enforce a non-default action for the threat (for example, allow), based on the associated Exempt Profiles settings.

The Used in security rule column does not indicate if the security rule is enabled, only if the security policy rule is configured with the threat exception. Select Policies > Security to check if an indicated security policy rule is enabled.

STEP 6 | Add an IP address on which to filter the threat exception or view existing Exempt IP Addresses. Configure an exempt IP address to enforce a threat exception only when the
associated session has either a matching source or destination IP address; for all other sessions, the threat is enforced based on the default signature action.

New Threat Categories and How to Use Them

This feature also introduces new threat categories to classify different types of threats. You can use threat categories to filter threat logs and ACC activity and to build custom reports. If, in earlier release versions, you had configured custom reports for antivirus and DNS signatures based on threat ID ranges, you can use threat categories to recreate those reports.

Custom reports based on antivirus and DNS ID ranges will no longer exist following the upgrade to PAN-OS 8.0.

The following table lists and describes threat categories that are used to classify different types of threat signatures and the events that these signatures detect. The threat categories are subsets of the more broad threat signature types: spyware, vulnerability, antivirus, and DNS signatures.

<table>
<thead>
<tr>
<th>New Threat Category in PAN-OS 8.0</th>
<th>Description</th>
<th>Threat Type</th>
<th>Content Update that Provides These Signatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>apk</td>
<td>Malicious Android Application Package (APK) files.</td>
<td>virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wildfire-virus</td>
<td></td>
</tr>
<tr>
<td>autogen</td>
<td>C2 traffic that has been detected with automatically-generated C2 signatures—these signatures can detect C2 traffic even when the C2 host is unknown or changes rapidly.</td>
<td>spyware</td>
<td>Antivirus</td>
</tr>
<tr>
<td>dmg</td>
<td>Apple disk image files (DMG), used with the Mac OS X operating system.</td>
<td>virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wildfire-virus</td>
<td></td>
</tr>
<tr>
<td>dns</td>
<td>DNS queries for hostnames associated with malware.</td>
<td>spyware</td>
<td>Antivirus</td>
</tr>
<tr>
<td>dns-wildfire</td>
<td>DNS queries for hostnames associated with malware—these are queries that WildFire detected when executing a previously unknown file in the WildFire virtual environment.</td>
<td>spyware</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td>flash</td>
<td>Adobe Flash applets and Flash content embedded in web pages.</td>
<td>virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wildfire-virus</td>
<td></td>
</tr>
<tr>
<td>flash-lzma</td>
<td>Adobe flash files that have undergone Lempel-Ziv-Markov chain algorithm (LZMA) compression.</td>
<td>virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wildfire-virus</td>
<td></td>
</tr>
<tr>
<td>New Threat Category in PAN-OS 8.0</td>
<td>Description</td>
<td>Threat Type</td>
<td>Content Update that Provides These Signatures</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>java-class</td>
<td>Java applets (JAR/class file types).</td>
<td>virus</td>
<td>Applications and Threats</td>
</tr>
<tr>
<td>js</td>
<td>JavaScript files.</td>
<td>virus</td>
<td>Antivirus</td>
</tr>
<tr>
<td>macho</td>
<td>Mach object files (Mach-O) are executables, libraries, and object code that are native to the Mach OS X operating system.</td>
<td>virus</td>
<td>Antivirus</td>
</tr>
<tr>
<td>WildFire or WildFire Private</td>
<td></td>
<td>wildfire-virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td>office</td>
<td>Microsoft Office files, including documents (DOC, DOCX, RTF), workbooks (XLS, XLSX), and PowerPoint presentations (PPT, PPTX).</td>
<td>virus</td>
<td>Antivirus</td>
</tr>
<tr>
<td>WildFire or WildFire Private</td>
<td></td>
<td>wildfire-virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td>openoffice</td>
<td>Office Open XML (OOXML) 2007+ documents.</td>
<td>virus</td>
<td>Antivirus</td>
</tr>
<tr>
<td>WildFire or WildFire Private</td>
<td></td>
<td>wildfire-virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td>pdf</td>
<td>Portable Document Format (PDF) files.</td>
<td>virus</td>
<td>Antivirus</td>
</tr>
<tr>
<td>WildFire or WildFire Private</td>
<td></td>
<td>wildfire-virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td>pe</td>
<td>Portable Executable (PE) files, including object code, DLLs, and FON (fonts).</td>
<td>virus</td>
<td>Antivirus</td>
</tr>
<tr>
<td>WildFire or WildFire Private</td>
<td></td>
<td>wildfire-virus</td>
<td>WildFire or WildFire Private</td>
</tr>
<tr>
<td>pkg</td>
<td>Apple software installer packages (PKGs), used with the Mac OS X operating system.</td>
<td>virus</td>
<td>Antivirus</td>
</tr>
<tr>
<td>WildFire or WildFire Private</td>
<td></td>
<td>wildfire-virus</td>
<td>WildFire or WildFire Private</td>
</tr>
</tbody>
</table>
Predefined File Blocking Profiles

You can now quickly and easily enforce the best practice File Blocking settings on your Security policy allow rules using two new predefined File Blocking profiles. For most traffic (including traffic on your internal network) you will want to block files that are known to carry threats or that have no real use case for upload/download to ensure that malware is not sneaking into your network or that sensitive data is not being exfiltrated out of your network in legitimate traffic.

The new profiles are intended a starting point that you can use to clone and modify per your specific business requirements:

- **basic file blocking**—Attach this profile to the Security policy rules that allow traffic to and from less sensitive applications to block files that are commonly included in malware attack campaigns or that have no real use case for upload/download. It blocks upload and download of PE files (.scr, .cpl, .dll, .ocx, .pif, .exe), Java files (.class, .jar), Help files (.chm, .hlp) and other potentially malicious file types, including .vbe, .hta, .wsf, .torrent, .7z, .rar, .bat. Additionally, it prompts users to acknowledge when they attempt to download encrypted-rar or encrypted-zip files. This rule alerts on all other file types to give you complete visibility into all file types coming in and out of your network.

- **strict file blocking**—Use this stricter profile on the Security policy rules that allow access to your most sensitive applications. This profile blocks the same file types as the other profile, and additionally blocks flash, .tar, multi-level encoding, .cab, .msi, encrypted-rar, and encrypted-zip files.

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Rule Name</th>
<th>Applications</th>
<th>File Types</th>
<th>Direction</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic file blocking</td>
<td>Predefined</td>
<td>Block high risk file types</td>
<td>any</td>
<td>PE files, .hta, .wsf, .torrent, .vbe, .hta, .hta, .hta</td>
<td>both</td>
<td>block</td>
</tr>
<tr>
<td>Continue prompt encrypted files</td>
<td>any</td>
<td>encrypted-rar, encrypted zip</td>
<td>any</td>
<td></td>
<td>both</td>
<td>continue</td>
</tr>
<tr>
<td>Log all other file types</td>
<td>any</td>
<td></td>
<td></td>
<td></td>
<td>both</td>
<td>alert</td>
</tr>
<tr>
<td>strict file blocking</td>
<td>Predefined</td>
<td>Block all risky file types</td>
<td>any</td>
<td>PE files, .hta, .wsf, .torrent, .vbe, .hta, .hta, .hta</td>
<td>both</td>
<td>block</td>
</tr>
<tr>
<td>Continue prompt encrypted files</td>
<td>any</td>
<td>encrypted-rar, encrypted zip</td>
<td>any</td>
<td></td>
<td>both</td>
<td>alert</td>
</tr>
<tr>
<td>Log all other file types</td>
<td>any</td>
<td></td>
<td></td>
<td></td>
<td>both</td>
<td>alert</td>
</tr>
</tbody>
</table>
GPRS Tunneling Protocol (GTP) Security

Mobile Network Operators use the GPRS Tunneling Protocol (GTP) on various interfaces in Roaming, Radio Access Network, and within the packet core in 3G and 4G networks. GTP allows mobile subscribers to use their phones (user equipment) to maintain a connection to a Packet Data Network (PDN) for internet access while on the move. The protocol uses tunnels to allow two GPRS support nodes (GSNs) to communicate over a GTP-based interface and separate traffic into different communication flows. GTP creates, modifies, and deletes tunnels for transporting IP payloads between the user equipment, the GPRS support nodes (GSNs) in the GPRS backbone network and the internet.

GTP comprises three types of traffic—control plane (GTP-C), user plane (GTP-U) and charging (GTP’ derived from GTP-C) traffic. Enabling GTP Security on the Palo Alto Networks firewall allows you to statefully inspect, validate, filter, and perform security checks on GTPv2-C, GTPv1-C, and GTP-U protocol messages.

View the PAN-OS releases by firewall model that support GTP Security and also view the 3GPP Technical Standards that GTPv2-C, GTPv1-C and GTP-U support.

Use the following workflow to enable stateful inspection and protocol validation for GTPv1-C, GTPv2-C, and GTP-U traffic. In addition, you can configure the firewall to inspect GTP-U content, filter GTP outer sessions based on APN, IMSI-Prefix and RAT, and enable overbilling protection for mobile subscribers.

Firewalls securing GTP traffic can be deployed in an active/passive HA; active/active HA is not supported.

STEP 1 | Enable GTP Security.
1. Log in to the firewall web interface.
2. Select Device > Setup > Management > General Settings.
4. Click OK.
5. Commit the change.

Enabling or disabling GTP Security requires a commit and reboot; the best practice is to commit and reboot at this point. After you enable GTP Security, the options for configuring and monitoring GTP traffic become available on the firewall.

STEP 2 | Create a GTP Protection profile to inspect GTP traffic.
1. Select Objects > Security Profiles > GTP Protection and Add a new profile.
2. Give the profile group a descriptive Name.
3. If the firewall is in Multiple Virtual System Mode, enable the profile to be Shared by all virtual systems.
4. Set up GTP Protection Profile for the GTP version(s) you want to inspect and configure the available options for filtering, overbilling protection, and the logging GTP messages for your compliance and troubleshooting needs.

STEP 3 | Allow GTP traffic on your network.
2. Enter a descriptive Name for the rule in the General tab.
3. In the Source tab, set the Source Zone.
4. In the Destination tab, set the Destination Zone.
As a best practice, restrict access to specific components in the EPC network; consider using address objects in the Destination Address field to enable access to specific IP addresses.

5. In the Applications tab, Add the applications that correspond to the network services you want to safely enable. For example, select gtp-v1, gtp-v2, gtp-u. Make sure to select the applications you enabled for inspection in the GTP Protection profile.

6. In the Service/URL Category tab, change the Service from application-default to any.

7. In the Actions tab, set the Action Setting to Allow.

8. Attach the GTP Protection profile to the Security policy rule. Select Profiles as the Profile Type and select the GTP inspection profile you set up earlier.

9. Verify that Log at Session End is enabled. GTP session start and GTP session end events are logged only when you enable log at session start and end in a Security policy rule. The session start and session end logs are available under Monitor > GTP Logs. All other GTP events are logged based on the settings you enabled in the GTP protection profile and are also available under Monitor > GTP Logs.

By default, the log storage quota for GTP is 2% of the total log storage capacity for the firewall model. Because GTP logs are high volume, increase the log quota or set up log forwarding to an external server.

10. Click OK.

STEP 4 | (Optional) Block GTP-v0 traffic in to your network. Add a Security policy rule to deny application gtp-v0.

3GPP recommends that a GTPv2 or GTPv1 entity that listens to the GTPv0 port should silently discard any GTPv0 messages it receives. 3GPP Rel-8 GTPv1 specification removed support for GTPv1 to GTPv0 interworking, hence the Palo Alto Networks firewall does not support stateful inspection of GTPv0 traffic.

STEP 5 | Commit your policies to the running configuration on the firewall.

STEP 6 | Monitor GTP traffic to verify that you have set up GTP inspection effectively for your visibility and logging needs.
WildFire Features

- WildFire Phishing Verdict
- WildFire Analysis of Blocked Files
- Panorama Centralized Management for WildFire Appliances
- WildFire Appliance Clusters
- Preferred Analysis for Documents or Executables
- Verdict Changes
- Verdict Checks with the WildFire Global Cloud
- Archive (RAR/7z) and ELF File Analysis
- Shared WildFire Verdicts
- Windows 10 Analysis Environment
WildFire Phishing Verdict

The new WildFire phishing verdict classifies credential phishing links found in emails separately from emailed links found to be exploits or malware. When the firewall detects a link in an email, it forwards the link to WildFire for analysis. WildFire classifies the link as phishing based on properties and behaviors the accompanying website displays and assigns the link the new phishing verdict. Phishing links are logged as WildFire Submissions to indicate that the firewall detected such a link in an email.

Firewalls with an active WildFire license that are connected to the WildFire public cloud and are configured to forward email links for analysis will automatically start receiving phishing verdicts after the upgrade to PAN-OS 8.0. Firewalls with both a WildFire license and a PAN-DB URL Filtering license can block access to phishing sites within five minutes of initial discovery.

For Firewalls in a WildFire Private Cloud Deployment:

The WildFire appliance does not support the new Phishing verdict. However, firewalls connected to a WildFire appliance that also have an active PAN-DB URL Filtering license can still benefit from phishing protection. For these firewalls, continue to step 5 to block users from accessing newly-discovered phishing sites.

STEP 1 | Check that the firewall has an active WildFire license and is connected to WildFire.

Blocking access to phishing sites requires a PAN-DB URL Filtering license, in addition to the WildFire license.

1. Select Device > Licenses to confirm that the WildFire License is active. If you are also planning to block access to phishing sites, confirm that the PAN-DB URL Filtering license is active.
2. Select Device > Setup > WildFire and confirm that the WildFire Public Cloud is set to:

wildfire.paloaltonetworks.com

3. Alternatively, you can connect the firewall to a WildFire regional cloud in the European Union (EU) or in Japan.

STEP 2 | Verify that the firewall is enabled to forward email links for WildFire analysis.

1. Select Objects > Security Profiles > WildFire Analysis and confirm that at least one profile is configured to forward email-link or any File Types for WildFire analysis.
2. Select Policies > Security to confirm that the WildFire Analysis profile is attached to a security policy rule:

STEP 3 | Monitor phishing links.

- View links the firewall forwarded that WildFire found to be phishing links:
Select Monitor > WildFire Submissions. The Verdict column displays Phishing for entries that record a phishing link. You can add the following filter to display only logs for phishing links:

\[(\text{verdict eq phishing})\]

- View phishing activity on the firewall ACC:
 Select ACC > Threat Activity, view WildFire Activity By Type and select phishing.
- View all phishing links WildFire has identified:
 The WildFire portal displays the total number of WildFire submissions that were found to be phishing links in the last hour and the last 24 hours:

Select Reports, filter by Verdict, and select Phishing to find the analysis reports for phishing links.

If you are submitting links to a regional WildFire cloud for analysis, instead use the WildFire EU portal or the WildFire Japan portal.

STEP 4 | Forward phishing logs as SNMP traps, syslog messages, or email notifications.

1. Select Objects > Log Forwarding and Add or modify a log forwarding profile to define the logs you want to forward.
2. Add a rule to the profile.
3. Set the Log Type to wildfire.
4. Add the Filter (verdict eq phishing).
5. Continue to define or update the profile, and click OK to save the profile when you're done.
6. Apply the new or updated log forwarding settings to traffic:
 1. Select Policies > Security and Add or modify a security policy rule.
 2. Select Actions and in the Log Setting section, attach the new or updated Log Forwarding profile to the security policy rule.
 3. Click OK to save the security policy rule.

STEP 5 | (Optional) To prevent users from inadvertently leaking corporate credentials to attackers, block access to phishing sites and block users from submitting usernames and passwords to untrusted and unsanctioned sites.

1. Select Objects > URL Filtering and Add or modify a URL Filtering profile.
2. Select Categories and filter the list of URL categories to find the phishing category.
3. Set the Site Access for phishing websites to Block to prevent users from accessing sites that aim to steal usernames and passwords.
4. Enable the new Credential Phishing Prevention feature to stop users from submitting credentials to untrusted sites, without blocking their access to these sites.
5. Apply the new or updated URL Filtering profile to traffic:
 1. Select Policies > Security and Add or modify a security policy rule.
 2. Select Actions and in the Profile Setting section, set the Profile Type to profiles.
 3. Attach the new or updated URL Filtering profile to the security policy rule.
4. Click **OK** to save the security policy rule.
WildFire Analysis of Blocked Files

If you enabled WildFire forwarding on your firewall, the firewall now submits blocked files that match antivirus signatures for WildFire analysis, in addition to unknown files. This allows WildFire to extract valuable information from new malware variants. Malware signatures often match multiple variants of the same malware family, and as such, block new malware variants that the firewall has never seen before. Sending these blocked malware samples for WildFire analysis allows WildFire to analyze them for additional URLs, domain names, and IP addresses that must be blocked. Since all WildFire analysis data is also available on AutoFocus, you can now use WildFire and AutoFocus to get a more complete perspective of all threats targeting your network, including blocked threats; this improves the efficacy of your security operations, incident response, and threat analysis.

Because blocked files are now forwarded to WildFire for analysis, you now have visibility into files that the firewall has successfully blocked. On the firewall, you can now view WildFire Submissions log details for blocked files, which include the threat log entry for a file and the threat ID matched to a file (for more information, refer to Globally Unique Threat IDs). Both the firewall and the WildFire portal also provide access to the WildFire analysis report for a blocked file so you can learn about its behavior when it executed in a WildFire analysis environment.

The firewall forwards blocked files to the WildFire public cloud based on your existing WildFire forwarding settings (Objects > Security Profiles > WildFire Analysis). The firewall doesn't forward files that are blocked based on your file blocking settings.

View Blocked Files

STEP 1 | Verify that your firewall can forward files to WildFire.

If you have a WildFire license, verify that it is active on the firewall, and get started with WildFire.

If you don't have a WildFire subscription, you can forward unknown and blocked files in portable executable (PE) format for WildFire analysis.

STEP 2 | View blocked files and their WildFire analysis information.

The firewall and the WildFire portal do not generate email alerts for blocked files.

On the firewall, select Monitor > Logs > WildFire Submissions, and choose from the following options:

- To check whether a file was allowed or blocked by the firewall, view the Action column.

WildFire submissions prior to PAN-OS 8.0 display with the firewall action alert. Now, for files forwarded to WildFire after upgrading to PAN-OS 8.0, the action displayed is either allow or block. Log entries with the action allow are files that the firewall has allowed to pass through your network. They can be known files that are benign or files allowed by your security policies. Log entries with the action block are files that the firewall has blocked based on antivirus signatures.

- To view only blocked files in the WildFire Submissions log, construct the filter (action eq block) and click Apply Filter. Refer to the complete workflow for filtering logs.

- To view the WildFire file analysis details for a blocked file, click the spyglass (🔍) next to the log entry and view the WildFire Analysis Report tab.

Alternatively, view blocked files on the WildFire portal:

1. Log in to the WildFire portal (https://wildfire.paloaltonetworks.com) with your support account credentials.
2. On the dashboard, choose one of the following actions:
 - Select a Source to view a list of files uploaded to WildFire by a particular source.
 - Click Reports to view all files uploaded to WildFire.
3. Click report icon to view the WildFire analysis report for a file.
4. Under Session Information, view the file Status to check whether the file was allowed or blocked by the firewall.

![SESSION INFORMATION]

The file Status is not available for files uploaded manually to the WildFire portal or with the WildFire API.

STEP 3 | Continue investigating blocked files.

- Use the SHA-256 hash (now provided for a blocked file that match antivirus signatures) to view artifacts associated with a blocked file in AutoFocus or VirusTotal.
- Use Globally Unique Threat IDs, found in the log entry for a blocked file, to search Threat Vault for the name of the signature that blocked the file.
Panorama Centralized Management for WildFire Appliances

Beginning with release 8.0.1, you can now manage WildFire appliances and WildFire appliance clusters with Panorama. Panorama can manage up to 200 WildFire appliances as WildFire appliance cluster nodes, standalone WF-500 appliances, or a combination of cluster nodes and standalone appliances. Panorama can manage a maximum of ten WildFire appliance clusters.

Compared to managing WildFire appliances and appliance clusters individually using the local CLI, using Panorama provides centralized management and monitoring of multiple appliances and appliance clusters. Centralized management enables you to push common configurations, configuration updates, and software upgrades to all or a subset of the managed WildFire appliances, which makes it easy to ensure that WildFire appliances and appliance clusters have consistent configurations.
WildFire Appliance Clusters

Beginning with this release, you can now configure and manage up to twenty WildFire appliances as a **WildFire appliance cluster** on a single network. This is especially useful in environments where you cannot use the WildFire public cloud. **WildFire appliance clusters** support larger firewall deployments on a single network than a standalone WildFire appliance supports. Additionally, clusters provide fault tolerance and a single signature package that is distributed to all firewalls that are connected to the cluster.

You can manage clusters locally, using the WildFire appliance CLI, or centrally, from a Panorama M-Series or virtual appliance. A WildFire cluster environment includes:

- From 2 to 20 WildFire appliances that you want to group and manage as a cluster. At a minimum, a cluster must have two WildFire appliances configured in a high-availability (HA) pair.
- Firewalls that connect to the cluster for traffic analysis and signature generation.
- *(Optional)* One or two Panorama appliances for centralized cluster management if you choose not to manage the cluster locally. To provide HA, use two Panorama appliances configured as an HA pair.

At a minimum, a cluster must have two WildFire appliances configured as a high-availability (HA) pair. WildFire appliances that you add to a WildFire appliance cluster become cluster nodes.

STEP 1 | Create a WildFire appliance cluster and add WildFire appliances to the cluster.

Configure the cluster member nodes and roles, configure HA, and verify the configuration. You can **Configure a Cluster and Add Nodes Locally** or **Configure a Cluster and Add Nodes on Panorama**.

STEP 2 | Configure basic WildFire appliance cluster settings.

Configure the connection to the WildFire public cloud, data retention policies, signature generation, the preferred analysis environment, DNS settings, and so on. You can **Configure Basic Cluster Settings Locally** or **Configure Basic Cluster Settings on Panorama**.

STEP 3 | Remove a WildFire appliance from a cluster.

Safely remove a node from a WildFire appliance cluster. You can **Remove a Node from a Cluster Locally**, however, removing a node from a cluster using Panorama is not supported.

With the introduction of managing WildFire appliance clusters on Panorama, you can also manage individual standalone WildFire appliances on Panorama.
Preferred Analysis for Documents or Executables

A single virtual machine (VM) image runs on the WildFire appliance; when you Upgrade the WildFire Appliance Software, you can choose for the WildFire appliance to use the VM image that most reflects your network environment. Each available VM image represents a single operating system and supports several different analysis environments based on that operating system. You can now dedicate all analysis environments to support certain file types: either documents (Microsoft Office files and PDFs) or portable executables (PEs). This feature is helpful if you are using the WildFire appliance to analyze specific file types; for example, if you’ve deployed a WildFire hybrid cloud to analyze documents locally and PEs in the WildFire global cloud. In this case, you could dedicate all analysis environments to documents. Previously, analysis environments were statically allocated and the resources available for document and executable analysis were evenly divided; you could not adjust the allocation of analysis resources even when the WildFire appliance was configured to analyze only one type of file.

STEP 1 | Confirm that the firewall is configured to forward only the file type to which you want to dedicate WildFire analysis environments.

1. In the firewall web interface, select Objects > Security Profiles > WildFire Analysis.
2. Confirm that the WildFire Analysis profile set to forward files to the WildFire private cloud for analysis is configured to forward documents or executables.
3. Select Policies > Security and confirm that the WildFire Analysis profile is attached to a security policy rule. Traffic the rule allows is forwarded to the WildFire appliance for private cloud analysis based on the WildFire Analysis profile settings.

STEP 2 | Allocate WildFire appliance resources to analyze either documents or executables.

Use the following CLI command:

```
admin@WF-500# set deviceconfig setting wildfire preferred-analysis-environment documents | executables | default
```

and choose from one of the following options:

- **documents**—Dedicate analysis resources to concurrently analyze 25 documents, 1 PE, and 2 email links.
- **executables**—Dedicate analysis resources to concurrently analyze 25 PEs, 1 documents, and 2 email links.
- **default**—The appliance concurrently analyzes 16 documents, 10 portable executables (PE), and 2 email links.

STEP 3 | Confirm that all WildFire appliances processes are running.

```
admin@WF-500> show system software status
```
Verdict Changes

You can now use the WildFire appliance to change a verdict for a sample. Verdict changes apply only to those samples submitted to the WildFire appliance, and the verdict for the same sample remains unchanged in the WildFire global cloud.

The **WildFire private cloud content package** is updated to reflect any verdict changes that you make (on the firewall, select **Device > Dynamic Updates > WF-Private** to enable WildFire private cloud content updates). When you change a sample verdict to malicious, the WildFire appliance generates a new signature to detect the malware and adds that signature to the WildFire private cloud content package. When you change a sample verdict to benign, the WildFire appliance removes the signature from the WildFire private cloud content package.

• **Change a sample verdict:**

  ```bash
  admin@WF-500# submit wildfire local-verdict-change hash <sha256 hash> comment <comment> verdict <verdict>
  ```

 - **hash**—Provide the SHA-256 hash of the file for which you want to change the verdict.
 - **verdict**—Enter the new file verdict: 0 indicates a benign sample; 1 indicates malware; 2 indicates grayware, and 4 indicates phishing.
 - **comment**—Include a comment to describe the verdict change.

• **See samples with changed verdicts:**

  ```bash
  admin@WF-500# show wildfire global local-verdict-change all | <sha256 hash>
  ```

 - **all**—See all samples with changed verdicts. The output includes the original verdict and the new verdict.
 - **<sha256 hash>**—Check a specific sample for a changed verdict. The output includes the original verdict and the new verdict.

• **Use the API to change a sample verdict:**

 Make a request to the new resource **submit/local-verdict-change** and include the API key, the file hash, the new verdict you want to apply to the sample, and a descriptive comment of the change:

  ```bash
  curl -X POST -H "Content-Type: multipart/form-data" -F "apikey=apikey" -F "hash=sha-256-hash" -F "verdict=0" -F "comment=comment-for-verdict-change" "https://wf-500/publicapi/submit/local-verdict-change"
  ```

 Use the following parameters when changing a WildFire appliance verdict for a file:

 - **apikey**—Enter your API key.
 - **hash**—Provide the SHA-256 hash of the file for which you want to change the verdict.
 - **verdict**—Enter the new file verdict: 0 indicates a benign sample, 1 indicates malware, 2 indicates grayware, and 4 indicates phishing.
 - **comment**—Include a comment to describe the verdict change.

 The following XML response verifies a successful verdict change. Example:
• **Use the API to see samples with changed verdicts:**

Make a request to the new resource `get/verdicts/changed` and include the API key and a start date for the query. Samples with changed verdicts from the specified start date to the present date is shown in this list:

```bash
curl -F "apikey=apikey" -F "date=YYYY-MM-DD" "https://wf-500/publicapi/get/verdicts/changed"
```

The `verdict` element value can be one of the following:
- 0—benign
- 1—malware
- 2—grayware
- 4—phishing

The XML response contains the WildFire verdict along with the related hash values for each sample with changed verdicts within the specified time-frame. Example:

```xml
<wildfire>
  <get-verdict-info>
    <sha256>afe6b95ad95bc689c356f34ec8d9094c495e4af57c932ac413b65ef132063acc</sha256>
    <verdict>1</verdict>
    <md5>0e4e3c2d84a9bc726a50b3c91346fbb1</md5>
  </get-verdict-info>

  ............
</get-verdict-info>

<wildfire>
  <get-verdict-info>
    <sha256>9739eb4207fe251d40f05187cbfd16081f97b246ebcc6010660244a84a9391b0</sha256>
    <verdict>2</verdict>
    <md5>481e625e50211efcaf6edb8f54f8cf83</md5>
  </get-verdict-info>
</wildfire>
```
Verdict Checks with the WildFire Global Cloud

The WildFire appliance can now leverage WildFire global cloud intelligence to deliver quick verdicts for known samples. This allows the WildFire appliance to dedicate analysis resources to samples that are truly unknown to both your private network and the global WildFire community. Before analyzing a sample locally, the WildFire appliance checks if the WildFire global cloud has already analyzed the sample (the WildFire appliance sends only the sample hash to the WildFire global cloud—it does not send the raw file or any additional sample data). If the sample is known to the WildFire global cloud, the WildFire appliance retrieves the sample verdict and analysis report and delivers them promptly to the firewall that detected the sample. If the sample is unknown to the WildFire global cloud, the WildFire appliance analyzes the sample locally. In either case, the WildFire appliance locally generates a signature to detect the malware, and delivers the signature to the firewall as part of the WildFire private cloud content update.

The WildFire appliance continues to periodically synchronize verdicts and analysis reports for locally-analyzed samples so that they match the verdicts and analysis reports the WildFire global cloud provides—this ensures that analysis information for locally-analyzed samples stays up-to-date with worldwide WildFire submissions and the latest threat intelligence. In cases where the WildFire global cloud and the WildFire appliance record a different verdict for a sample, the WildFire global cloud verdict takes precedence and changes the local verdict.

The following CLI command enables the WildFire appliance to perform verdict lookups and synchronize verdicts with the WildFire global cloud. This feature is disabled by default; set the command to `yes` to enable the feature.

```
admin@WF-500# set deviceconfig setting wildfire cloud-intelligence cloud-query [yes | no]
```

Another new WildFire appliance feature supports Verdict Changes for locally-analyzed samples. If you change the verdict for a sample, the new verdict continues to apply to the locally-submitted sample, even if the WildFire global cloud has recorded a different verdict for the same sample.
Archive (RAR/7z) and ELF File Analysis

To use this feature, be sure to download and install the latest PAN-OS content release. PAN-OS Applications and Threats content release 745 enables you to specify file forwarding of archive (.rar and 7z) and linux (ELF) file types. For more information about the update, refer to the Applications and Threat Content Release Notes.

To download the release notes, log in to the Palo Alto Networks Support Portal, click Dynamic Updates and select the release notes listed under Apps + Threats.

The WildFire public cloud can now analyze and classify linux (ELF) and archive (RAR and 7-Zip) files with malicious, benign, or grayware verdicts. As with all malicious samples, WildFire public cloud generates and distributes a signature to firewalls to prevent future instances of the file from penetrating your network. Keep in mind, the WildFire appliance does not support ELF and archive file analysis.

Archive and ELF file types are sent in their entirety to the WildFire cloud when submitted for analysis, as they are not decoded by the firewall.

The following new file types are supported for WildFire public cloud analysis:

- **Archive Files:**
 - RAR—Supports Roshal Archive (.rar) files.
 - 7-Zip—Supports (.7z) files.

 - The archive file verdict is determined by the highest severity verdict of the archive contents.
 - Archive files that are multi-part or password protected cannot be analyzed.
- **ELF**—Supports Executable and Linkable Format (.elf) files.

Manually or Programmatically Submit Archive/ELF Files

Submit archive and ELF file types directly to the WildFire public cloud for analysis. With a WildFire subscription, you can manually and programmatically submit a daily total of 1,000 files. Each archive or ELF submission counts as a single upload regardless of the contents.

STEP 1 | Manually submit files to the WildFire public cloud for analysis. You can then view the WildFire sample analysis report and verdict (malicious, grayware or benign) on the WildFire portal.

STEP 2 | Use the WildFire API to submit files to the WildFire public cloud. You can use the WildFire API to retrieve verdicts and analysis reports for the files. You can also specify archive or ELF as the target analysis environment when you retrieve a packet capture through the WildFire API.

Forward Archive/ELF Files for WildFire Analysis

To forward RAR, 7z, and ELF files for WildFire public cloud analysis, the firewall must be configured to forward Any unknown files or the specific file type(s) to the WildFire public cloud. To forward archive file types, you must configure the WildFire Analysis Profile with the appropriate settings.

STEP 1 | Enable file type forwarding.

1. Select **Objects > Security Profiles > WildFire Analysis** and **Add** or modify a profile to define traffic to forward for WildFire analysis.
1. Add or modify a profile rule, select file type, and set the rule to forward the new Any file type. You can also specify the archive and linux file types if you install the Applications and Threats content release 745 or later.

 Profile rules with the file type set to Any forward all file types for WildFire analysis.

2. Select Destination and set the profile rule to forward the files to the public-cloud.
3. Click OK to save the new or modified WildFire Analysis profile.

2. Attach the WildFire Analysis profile to a security policy rule—traffic matched to the policy rule is forwarded for WildFire analysis.

 1. Select Policies > Security and Add or modify a security policy rule.
 2. Select Actions and set the Profile Type to Profiles.
 3. Select the newly-created WildFire Analysis profile.
 4. Click OK to save the security policy rule.

 For detailed steps to configure a WildFire Analysis profile and to attach the profile to a security policy rule, see Forward Files for WildFire Analysis.

STEP 2 | Select Monitor > WildFire Submissions to find WildFire verdicts and analysis reports for archive/ELF files that have been submitted by the firewall.
Shared WildFire Verdicts

The WildFire public cloud now shares verdicts generated from sample analysis between all regional clouds (the Global cloud [North America], EU cloud, Japan cloud, and the Singapore cloud). Previously the sample verdicts generated in a particular region (e.g. the EU cloud) remained isolated within each cloud. Verdict requests for unknown samples will now initially query your local cloud before requesting and verifying the result against other regional clouds—this ensures that analysis data stays up-to-date with worldwide WildFire submissions and the latest threat intelligence.

Customer samples cannot be retrieved from the EU regional cloud due to data privacy restrictions.
Windows 10 Analysis Environment

The WildFire public cloud can now analyze files using the Windows 10 VM, further increasing the threat prevention coverage capabilities of WildFire. No additional configuration is required to take advantage of the new VM.

This virtual analysis environment is configured using the following system attributes:

Platform ID 66: Windows 10 x64, Flash 22, Adobe Reader 11, and Office 2010.

The Windows 10 VM does not support analysis of 32-bit PE files.

The WildFire appliance does not support the Windows 10 analysis environment.

Files analyzed using the new VM will be shown in your WildFire Analysis Report, under the **Dynamic Analysis** heading. You can select the virtual machines that were used to analyze a file and view the details of behaviors detected in the file.

For more information about submitting files for analysis, refer to: Submit Files for Wildfire Analysis
Authentication Features

> SAML 2.0 Authentication
> Authentication Policy and Multi-Factor Authentication
> TACACS+ User Account Management
> Authentication Using Custom Certificates
> Authentication for External Dynamic Lists
SAML 2.0 Authentication

You can now use Security Assertion Markup Language (SAML) 2.0 to authenticate administrators who access the firewall or Panorama web interface and end users who access services or applications. In environments where each user accesses many services or applications and authenticating for each one would impede user productivity, you can configure SAML single sign-on (SSO) to enable one login to access multiple services and applications. Likewise, SAML single logout (SLO) enables a user to end sessions for multiple services and applications by logging out of just one session. You can use SAML authentication for services and applications that are external or internal to your organization.

SSO is available to administrators and to GlobalProtect and Captive Portal end users. SLO is available to administrators and GlobalProtect end users, but not to Captive Portal end users.

Administrators can use SAML to authenticate to the firewall or Panorama web interface, but not to the CLI.

SAML authentication requires a service provider (the firewall or Panorama), which controls access to services or applications, and an identity provider (IdP) such as PingFederate, which authenticates users. To configure SAML authentication, you must register the firewall or Panorama and the IdP with each other to enable communication between them. If the IdP provides a metadata file containing registration information, you can import it onto the firewall or Panorama to register the IdP and to create an IdP server profile. The server profile specifies the certificate that the IdP uses to sign SAML messages. You can also import a certificate for the firewall or Panorama to sign SAML messages. Using certificates is optional but recommended to secure communications between the firewall or Panorama and the IdP.

STEP 1 | (Recommended) Obtain the certificate that the firewall will use to sign SAML messages that it sends to the IdP.

 If the certificate doesn’t specify key usage attributes, all usages are allowed by default, including signing messages. In this case, you can obtain the certificates by any method.

 If the certificate does specify key usage attributes, one of the attributes must be Digital Signature, which is not available on certificates that you generate on the firewall or Panorama. In this case, you must import the certificate from your enterprise certificate authority (CA) or a third-party CA.

STEP 2 | Select Device > Server Profiles > SAML Identity Provider and Import the metadata file that your IdP provided.

 When you import the metadata file, the firewall automatically creates a server profile and populates the connection, registration, and certificate information. The IdP uses the certificate to sign SAML messages that it sends to the firewall. You must manually configure the other server profile settings.

STEP 3 | Select Device > Authentication Profile and Add an authentication profile to define authentication settings such as SAML SLO. Select the IdP Server Profile you configured and
select the **Certificate for Signing Requests**. The firewall uses this certificate to sign SAML messages that it sends to the IdP.

![Image of certificate selection](image)

STEP 4 | Assign the authentication profile to firewall applications that require authentication.

- Administrator accounts that you manage locally on the firewall. In this example, create a local administrator before you verify the SAML configuration later in this procedure.
- Administrator accounts that you manage externally in the IdP identity store. Select **Device > Setup > Management**, edit the Authentication Settings, and select the **Authentication Profile**.
- **Authentication policy** rules that secure the services and applications that Captive Portal end users access.
- **GlobalProtect portals and gateways** that end users access.

STEP 5 | **Commit** your changes.

The firewall validates the **Identity Provider Certificate** that you assigned to the SAML IdP server profile.

STEP 6 | Create a metadata file that you can use to register the firewall application with the IdP—Select **Device > Authentication Profile** and click **Metadata** in the row of the authentication profile you configured.

![Image of metadata creation](image)

Refer to your IdP documentation for the steps to import the metadata file onto the IdP server and register the firewall application.

STEP 7 | Verify that users can authenticate using SAML—As the administrator you created locally on the firewall, log in to the firewall web interface using the **Use Single Sign-On** option. After authenticating through the IdP, use the same administrator account to access another SSO application. If you can access the application without authenticating again (assuming Security policy allows access to that application), SSO authentication succeeded.
Authentication Policy and Multi-Factor Authentication

To protect services and applications from attackers, you can use the new Authentication policy to control access for end users. Authentication policy provides the benefit of letting you to choose how many authentication challenges of different types (factors) users must respond to. Using multiple factors of authentication (MFA) is particularly useful for protecting your most sensitive services and applications. For example, you can force users to enter a login password and then enter a verification code that they receive by phone before accessing critical financial documents. To reduce the frequency of MFA challenges that interrupt the user workflow, you can specify an authentication timeout period during which a user responds to the challenges only once for repeated access to services and applications.

The MFA factors that the firewall supports include Push, Short Message Service (SMS), Voice, and One-time password (OTP) authentication. The firewall integrates with MFA vendors through:

- **APIs**—The supported vendors are Duo v2, Okta Adaptive, and PingID. Palo Alto Networks will periodically add or update support for MFA vendor APIs through Applications content updates.
- **RADIUS**—The firewall supports all vendors through RADIUS.

STEP 1 | Configure Captive Portal in Redirect mode.

The firewall uses the Captive Portal web form to prompt users for the first authentication factor. The firewall also uses Captive Portal to record the timestamps associated with successful authentication events. The firewall uses the timestamps to evaluate the authentication timeout periods that you set in Authentication policy rules (later in this procedure).

STEP 2 | Configure a server profile that defines how the firewall connects to the service that provides the first authentication factor.

For example, to add an LDAP server profile, select Device > Server Profiles > LDAP and Add a profile.

STEP 3 | Select Device > Server Profiles > Multi Factor Authentication and Add an MFA server profile for each authentication factor after the first factor.
STEP 4 | Select Device > Authentication Profile and Add an authentication profile.

The profile specifies the order in which the firewall evokes authentication factors.

- First factor—Select the Type and select the Server Profile you configured.
- Additional factors—Select Factors, Enable Additional Authentication Factors, and Add the MFA server profiles you configured.

![Authentication Profile](image)

STEP 5 | Select Objects > Authentication and Add an authentication enforcement object to associate the authentication profile with a Captive Portal method for authenticating users and for recording authentication timestamps.

![Authentication Enforcement](image)

STEP 6 | Select Policies > Authentication and Add an Authentication policy rule.

- For the Destination Address, you can specify the IP addresses of the services and applications (such as servers) that require authentication for users to access them.
For the Actions, select the Authentication Enforcement object you configured and specify the Timeout period in minutes (default 60) during which the firewall prompts the user to authenticate only once for repeated access to services and applications. The firewall evaluates the Timeout based on the timestamps it recorded for authentication events.

STEP 7 | Customize the MFA login page that the firewall displays to tell users how to respond to MFA challenges—Select Device > Response Pages, select MFA Login Page, Export the Predefined response page to your client system, and use an HTML editor to customize the page. When you finish customizing the page, save it with a unique name and Import it back onto the firewall.

STEP 8 | Configure a Security policy that allows users to access the services and applications that require authentication, and then Commit your changes.

STEP 9 | Verify that the firewall enforces MFA by logging in to your network as one of the users specified in the Authentication rule and requesting a service or application specified in the rule. The firewall displays the Captive Portal web form for the first authentication factor.
After you enter your login credentials, the firewall displays an MFA login page for the next authentication factor.

![MFA login page](image)

After you respond to all the authentication factors, the firewall evaluates Security policy and provides access to the service or application.

The automated correlation engine on the firewall uses several new correlation objects to detect events on your network that could indicate credential abuse relating to MFA. To review the events, select Monitor > Automated Correlation Engine > Correlated Events.
TACACS+ User Account Management

You can now use Terminal Access Controller Access-Control System Plus (TACACS+) Vendor-Specific Attributes (VSAs) to manage firewall and Panorama administrator accounts on an external server. Using an external server to centrally manage all administrators is useful in deployments where you don’t want to use the firewall and Panorama to manage a subset of administrators. You can manage both authentication and authorization for administrators. For authorization, TACACS+ VSAs enable you to quickly change the roles, access domains, and user groups of administrators through your directory service instead of reconfiguring settings on the firewall and Panorama.

In this example procedure, you configure authentication and authorization for firewall administrator accounts that you manage on a TACACS+ server.

STEP 1 | Select Device > Server Profiles > TACACS+ and Add a TACACS+ server profile to define how the firewall connects to the server.

As a best practice, select CHAP if the TACACS+ server supports that Authentication Protocol; it is more secure than PAP.

STEP 2 | Select Device > Authentication Profile and Add an authentication profile to specify the server profile you configured and to configure authentication settings.

You must Retrieve user group from TACACS+ to collect user group information from VSAs defined on the TACACS+ server. The firewall matches the group information against the groups you specify in the Allow List (Advanced settings) of the authentication profile.
STEP 3 | Enable the firewall to use the authentication profile for all administrators—Select Device > Setup > Management, edit the Authentication Settings, select the Authentication Profile you configured, and click OK.

STEP 4 | Configure an Admin Role profile if the administrator will use a custom role instead of a predefined (dynamic) role.

STEP 5 | Select Device > Access Domain and Add access domains if the firewall has more than one virtual system.

STEP 6 | Commit your changes.

STEP 7 | Configure the TACACS+ server—Refer to your TACACS+ server documentation for the steps to:
- Add the firewall IP address or hostname as the TACACS+ client.
- Add the administrator accounts.

If you selected CHAP as the Authentication Protocol, you must define accounts with reversibly encrypted passwords. Otherwise, CHAP authentication will fail.

- Define TACACS+ VSAs for the role, access domain, and user group of each administrator.

STEP 8 | Verify that the TACACS+ server performs authentication and authorization for administrators by logging in to the firewall web interface with an administrator account that you added to the TACACS+ server. Verify the following:
- You can access only the web interface pages that are allowed for the role you associated with the administrator.
- In the Monitor, Policies, and Objects tabs, you can access only the virtual systems that are allowed for the access domain you associated with the administrator.
Authentication Using Custom Certificates

You can now configure mutual authentication of Panorama, firewalls, and Log Collectors using custom certificates. This allows you to establish a unique chain of trust between Panorama and its managed devices instead of relying on predefined certificates used for management and inter-device communication. You can also configure custom certificates for mutual authentication between the Windows User-ID agent and the firewalls; this connection is used for sending user mapping information from the agent to the firewall. User-ID mapping information redistribution between firewalls and Panorama use the existing connections between Panorama and its managed devices. Additionally, you can use custom certificates for authentication between Panorama high availability (HA) peers. You can generate these certificates locally on Panorama or the firewall, obtain them from a trusted third-party certificate authority (CA), or obtain certificates from your own enterprise CA. By using custom certificates, you can establish a unique chain of trust to ensure mutual authentication between Panorama and the devices it manages.

Beginning in 8.0.1, you can also configure custom certificates for mutual authentication between the Terminal Services agent and the firewalls.

- Deploy Custom Certificates
- Deploy Custom Certificates for Panorama HA
- Deploy a Custom Certificate on Windows User-ID Agent
- Deploy a Custom Certificate on the Terminal Services Agent

Deploy Custom Certificates

Complete the following procedure to obtain custom certificates and deploy them on your Panorama and its managed devices.

STEP 1 | Generate or obtain your server and client certificates.

Based in the needs of your organization, choose one of the supported methods for generating or obtaining your custom certificates.

STEP 2 | Configure the server certificate profile and SSL/TLS service profile for Panorama or server Log Collector.

1. Configure a certificate profile. This profile includes the server certificate, as well as the root and intermediate CAs.
2. Configure an SSL/TLS service profile.

STEP 3 | Configure Secure Server Communication on Panorama or Log Collector.

1. Select the SSL/TLS service and certificate profiles for secure server communication.
2. Optionally, you can add another layer of security by authorizing clients.
 - You can configure an authorization list. The authorization list checks the client certificate Subject or Subject Alt Name. If the Subject or Subject Alt Name presented with the client certificate does not match an identifier on the authorization list, authentication is denied.
 - You can configure Panorama can also authorize firewalls and Log Collectors based on their serial number.
3. Do not check Allow Custom Certificates Only until you have deployed custom certificates on your managed devices.
4. Set the Disconnect Wait Time in minutes. This is the amount of time Panorama waits to terminate its current connection with managed devices before breaking that connection and reestablishing it using custom certificates for authentication. When you commit your configuration, the wait time count down begins.
STEP 4 | Configure the client certificate profile on the firewall or Panorama (and push it applicable managed devices).

Configure a certificate profile or profiles for the device or devices managed by Panorama. You can configure a unique certificate profile for each managed device or push the certificate profile to managed devices as part of a template.

You can use a local certificate or obtain a certificate from a Simple Certificate Enrollment Protocol (SCEP) server.

STEP 5 | Deploy the client certificates on firewalls or Log Collectors.

1. On the firewall or client Log Collector, configure the Secure Client Connection settings. Assign the certificate or SCEP profile and certificate profile for the firewall to use for authentication. Additionally, the firewall can verify the server’s identity by checking matching the server’s IP address or FQDN with common name in the server certificate.

2. Commit your changes. After committing your changes, the firewall will begin using the custom certificate when the disconnect wait time is complete and the server has terminated its current connection to the client.

STEP 6 | Enforce the use of custom certificates.

1. Return to Panorama or the server Log Collector. By selecting, Allow Customer Certificate Only, all devices managed by Panorama must use custom certificates. If not, authentication between Panorama and the firewall or Log Collector fails.

2. To add additional managed devices, you must deploy the certificates on the firewall or Log Collector before adding it to Panorama or disable custom-certificate enforcement until the certificate is deployed.

Deploy Custom Certificates for Panorama HA

You can configure mutual authentication using custom certificates for securing the HA connection between Panorama HA peers. Complete the following procedure to obtain custom certificates and deploy them on your Panorama HA peers.

STEP 1 | Generate and deploy custom certificates on the primary Panorama.

1. Generate a certificate authority (CA) certificate on Panorama.
2. Configure a certificate profile that includes the root CA and intermediate CA.
3. Configure an SSL/TLS service profile.

STEP 2 | Configure Secure Server Communication on the primary Panorama.

1. Assign the SSL/TLS service and certificate profiles for secure server communication.
2. Do not check Allow Custom Certificates Only until you have deployed custom certificates on your managed devices.
3. Set the Disconnect Wait Time in minutes. This is the amount of time Panorama waits to terminate its current connection with managed devices before breaking that connection and reestablishing it using custom certificates for authentication. When you commit your configuration, the wait time count down begins.

STEP 3 | Configure the client certificate profile on the secondary Panorama.

Configure a certificate profile or profiles for the device or devices managed by Panorama.

STEP 4 | Configure Secure Client Communication on the secondary Panorama.
1. Configure the *Secure Client Connection* settings. Assign the certificate and certificate profile for the firewall to use for authentication. Additionally, the firewall can verify the server’s identity by checking matching the server’s IP address or FQDN with common name in the server certificate.

2. **Commit** your changes. After committing your changes, the firewall will begin using the custom certificate when the disconnect wait time is complete and the server has terminated its current connection to the client.

STEP 5 | Enforce the use of custom certificates.

After deploying client certificates on all managed devices, return to Panorama or the server Log Collector. By selecting, *Allow Customer Certificate Only*, all devices managed by Panorama must use custom certificates. If not, authentication between the Panorama peers fails.

Deploy a Custom Certificate on Windows User-ID Agent

Complete the following procedure to obtain and deploy custom certificates for mutual authentication between the Windows User-ID Agent and a firewall.

STEP 1 | Generate or obtain your server and client certificates.

Based in the needs of your organization, choose one of the supported methods for generating or obtaining your custom certificates.

The server certificate that you install on the Windows User-ID Agent requires the Privacy Enhanced Mail (PEM) format and an encrypted passphrase.

STEP 2 | Upload the server certificate to the Windows User-ID Agent.

Under *Server Certificate* on the Windows User-ID agent, upload the server certificate and enter the private key password.

STEP 3 | Configure the client certificate profile on the firewall.

Configure a certificate profile for the firewall.

STEP 4 | Apply the certificate profile.

On the firewall, select *Device > User Identification > Connection Security* and choose the certificate profile.

Deploy a Custom Certificate on the Terminal Services Agent

Beginning in 8.0.1, you can complete the following procedure to obtain and deploy custom certificates for mutual authentication between the Terminal Services Agent and a firewall.

STEP 1 | Generate or obtain your server and client certificates.

Based in the needs of your organization, choose one of the supported methods for generating or obtaining your custom certificates.

The server certificate, installed on the Terminal Services Agent, requires an encrypted private key.

STEP 2 | Upload the server certificate to the Terminal Services Agent.

Under *Server Certificate* on the Terminal Services agent, upload the server certificate and enter the private key password.

STEP 3 | Configure the client certificate profile on the firewall.
Configure a certificate profile for the firewall.

STEP 4 | Apply the certificate profile.

On the firewall, select **Device > User Identification > Connection Security** and choose the certificate profile.
Authentication for External Dynamic Lists

When retrieving external dynamic lists hosted on SSL/TLS secured servers (servers with an HTTPS URL), the firewall now validates the digital certificates of the server before proceeding with the retrieval. You must now enable server authentication for these external dynamic lists for the firewall to retrieve them. Additionally, you can now retrieve external dynamic lists hosted on SSL/TLS secured servers that enforce basic HTTP username/password authentication (client authentication). Server authentication prevents man-in-the-middle attacks by ensuring that the firewall retrieves an external dynamic list from a valid source, not a malicious or spoofed server, while client authentication allows you to use more secure sources (such as MineMeld) that limit access to their external dynamic lists to authorized users. If the certificate of an external dynamic list server is expired or revoked, or if you enter incorrect login credentials for the list, authentication fails. The firewall then ceases to enforce policy based on the list contents.

In Panorama, you can use external dynamic lists to enforce policy across multiple firewalls in a device group. Panorama enforces policy without server and client authentication for firewalls running PAN-OS 7.1 and earlier versions.

STEP 1 Select Objects > External Dynamic Lists, and click on a dynamic IP, domain, or URL list.

STEP 2 (New) If the server hosting the external dynamic list is secured with SSL (such as lists with an HTTPS URL), enable server authentication.

You cannot edit or save changes to an external dynamic list with an HTTPS URL if you don’t enable server authentication first.

Select an existing Certificate Profile for the list, or create a New Certificate Profile.

A certificate profile authenticates a device and its certificates. The certificate profile you select must have a root CA certificate that matches the certificate installed on the server you are authenticating (also an intermediate CA certificate, if the server has one). It is also recommended that you enable CRL and/or OCSP status verification, which checks the revocation status of the server certificates. Learn more about how to configure a certificate profile.

If the external dynamic list source has an HTTP URL, you are not required to select a certificate profile. The firewall connects to the server that hosts the external dynamic list without certificate validation.

Maximize the number of external dynamic lists that you can use to enforce policy. Use the same certificate profile to authenticate external dynamic lists from the same source URL. If you assign different certificate profiles to external dynamic lists from the same source URL, the firewall counts each list as a unique external dynamic list.

STEP 3 (New) If the source of the external dynamic list has an HTTPS URL and requires a username and password for list access, enable client authentication.

1. Select Client Authentication.
2. Enter the username and password required by the list source.
3. Re-enter the password to confirm it.

STEP 4 | *(Optional)* Test the connectivity of the firewall to the server hosting the external dynamic list.

Click **Test Source URL**. A popup indicates whether the server is accessible.

The Test Source URL button only verifies that the firewall can connect to the server. It does not check the status of the server’s certificate.

STEP 5 | Save the configuration.

Click **OK** and **Commit**.

STEP 6 | Find external dynamic lists that failed authentication.

External dynamic lists that fail server or client authentication require your immediate attention because the firewall ceases to enforce policy based on their contents. The firewall generates critical system logs to alert you of authentication failure. To manually check if an external dynamic list authenticates successfully, retrieve an external dynamic list from the web server.

If a server fails to authenticate, you can disable server authentication as a stop-gap measure until the owner of the external dynamic list addresses the cause of the failure.
User-ID Features

- Panorama and Log Collectors as User-ID Redistribution Points
- Centralized Deployment and Management of User-ID and TS Agents
- User Groups Capacity Increase
- User-ID Syslog Monitoring Enhancements
- Group-Based Reporting in Panorama
Panorama and Log Collectors as User-ID Redistribution Points

You can now leverage your Panorama and distributed log collection infrastructure to redistribute User-ID mappings in large-scale deployments. Because the infrastructure will have existing connections from firewalls to Log Collectors to Panorama, you can aggregate the mappings on Panorama without the administrative hassle of setting up extra connections between firewalls. Panorama can then redistribute the aggregated mappings to the firewalls that you use to enforce policies and generate reports for all the users in your network. Each Panorama management server, Log Collector, and firewall can receive user mappings from up to 100 redistribution points. The redistribution points can be Windows-based User-ID agents or other Panorama management servers, Log Collectors, and firewalls.

You cannot redistribute group mapping information or redistribute user mapping information collected from Terminal Services (TS) agents.

Figure 1: Panorama and Log Collectors as User-ID Redistribution Points

STEP 1 | Configure the firewalls to redistribute mapping information.

In this example procedure, you use Panorama to push configurations to the firewalls. Therefore, the firewalls must be managed devices.

1. Log in to the Panorama web interface.
2. Configure the firewalls to function as User-ID redistribution points—Select Device > User Identification > User Mapping, select the Template to which the firewalls are assigned, edit the Palo Alto Networks User-ID Agent Setup, and configure the Redistribution settings.
3. Enable User-ID traffic on an interface that the firewall uses when responding to User-ID mapping queries from receiving devices (Log Collectors, in this example). You can use Panorama templates to perform this task for multiple firewalls.

STEP 2 | Configure each Log Collector to receive mapping information from firewalls and to redistribute the information to Panorama.

1. Add the firewalls as redistribution points to the Log Collector—Select Panorama > Managed Collectors, edit the Log Collector, select User-ID Agents, and Add each firewall.

2. Enable the management (MGT) interface of the Log Collector to respond to User-ID mapping queries from Panorama—Select Interfaces, click Management, select User-ID in the Network Connectivity Services section, and click OK twice.

STEP 3 | Configure the Panorama management server to receive mapping information from Log Collectors and to redistribute the information.

1. Add the Log Collectors as User-ID redistribution points to Panorama—Select Panorama > User Identification and Add each Log Collector.

 Ignore the Collector Name and Collector Pre-Shared Key fields; they apply only when the User-ID agent is a firewall, not a Log Collector.

2. Enable the Panorama MGT interface to respond to User-ID mapping queries from the firewalls that enforce policies and generate reports—Select Panorama > Setup > Interfaces, click Management, select User-ID in the Network Connectivity Services section, and click OK.

STEP 4 | Configure the firewalls that enforce policies and generate reports to receive mapping information from Panorama.

1. Select Device > User Identification > User-ID Agents, select the Template to which the firewalls are assigned, and Add Panorama as a User-ID redistribution point.

2. Select Commit > Commit and Push to activate your changes on Panorama, the Log Collectors, and the firewalls.

STEP 5 | Verify that firewalls receive the redistributed mapping information.

This step samples a single user mapping redistributed to a single firewall. Repeat the step for several user mappings and several firewalls to ensure your configuration is successful.
1. Access the CLI of a firewall that receives mappings from Windows-based User-ID agents or that uses its PAN-OS integrated User-ID agent to map IP addresses to usernames.

2. Display all the user mappings on the firewall by running the following command:

   ```
   > show user ip-user-mapping all
   ```

3. Record the IP address associated with any one username.

4. Access the CLI of a top-layer firewall and run the following command, using the `<IP-address>` you recorded in the previous step:

   ```
   > show user ip-user-mapping ip <IP-address>
   ```

 If the firewall successfully received the user mapping, it displays output similar to the following, with the same username as you recorded in the middle-layer firewall.

<table>
<thead>
<tr>
<th>IP address: 192.0.2.0 (vsys1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User: corpdomain\username1</td>
</tr>
<tr>
<td>From: UIA</td>
</tr>
<tr>
<td>Idle Timeout: 10229s</td>
</tr>
<tr>
<td>Max. TTL: 10229s</td>
</tr>
<tr>
<td>MFA Timestamp: first(1) - 2016/12/09 08:35:04</td>
</tr>
<tr>
<td>Group(s): corpdomain\groupname(621)</td>
</tr>
</tbody>
</table>
Centralized Deployment and Management of User-ID and TS Agents

You can use endpoint management software, such as Microsoft Windows Server Update Services (WSUS) or System Center Configuration Manager (SCCM), to remotely install, configure, and upgrade multiple Windows-based User-ID agents and Terminal Services (TS) agents. Using endpoint management software streamlines your workflow and helps you to deploy and configure numerous User-ID and TS agents in a single operation instead of using a manual login session for each agent.
User Groups Capacity Increase

You can now configure policies to reference more user groups. This is useful in environments where access control for each application or service is based on membership in a user group, and where the number of applications, services, and groups is increasing.

The number of distinct user groups that each firewall or Panorama can reference across all policies varies by model:

- VM-50, VM-100, VM-300, PA-200, PA-220, PA-500, PA-800 Series, PA-3020, and PA-3050 firewalls—1,000 groups
- VM-500, VM-700, PA-5020, PA-5050, PA-5060, PA-5200 Series, and PA-7000 Series firewalls, and all Panorama models—10,000 groups

In this release, you will also find that error alerts for group mapping configurations are improved: the validation process now checks for errors in nested group lists. Nesting in this context describes group lists where individual list entries can also be group lists. The firewall and Panorama can validate group lists that are nested up to ten layers deep.
User-ID Syslog Monitoring Enhancements

The following enhancements improve the accuracy of User-ID mappings and simplify monitoring syslog senders for mapping information:

- **Automatic deletion of user mappings**—To improve the accuracy of your user-based policies and reports, you can now use syslog monitoring to detect when users have logged out; the firewall automatically deletes the associated User-ID mappings. Deleting outdated mappings is particularly useful in environments where IP address assignments change often.

- **Multiple syslog formats**—In environments where multiple points of authentication send syslog messages in different formats, it is now easier to collect user mappings from the messages because the firewall can ingest multiple syslog formats from the same syslog sender.

STEP 1 | Define custom Syslog Parse profiles so that the firewall filters syslog messages for login and logout events.

Select **Device > User Identification > User Mapping**, edit the Palo Alto Networks User-ID Agent Setup, select **Syslog Filters**, and **Add** a Syslog Parse profile.

Each profile identifies either login events or logout events, but no single profile can identify both:

- Example of Syslog Parse profile for login events:

 ![Example of Syslog Parse profile for login events](image)

- Example of Syslog Parse profile for logout events:

 ![Example of Syslog Parse profile for logout events](image)

STEP 2 | Define the syslog senders that the firewall will monitor for syslog messages.

Select **Device > User Identification > User Mapping** and **Add** syslog senders to the Server Monitoring section. For syslog senders that send messages in multiple formats, **Add** a Syslog Parse profile for each format. Specify the event type (login or logout) for each profile.

As a security best practice, select SSL when using the PAN-OS integrated User-ID agent to collect user mappings.
STEP 3 | Enable syslog listener services in the InterfaceManagement profile associated with the firewall interface used for user mapping.

Select User-ID Syslog Listener-SSL and/or User-ID Syslog Listener-UDP based on the connection types you specified for the syslog senders in the previous step.

STEP 4 | Commit and verify your changes.

1. Commit your changes.
2. Log in to a client system for which a monitored syslog sender generates login and logout event messages.
3. Log in to the firewall CLI.
4. Verify that the firewall mapped the login username to the client IP address:

```
> show user ip-user-mapping ip <ip-address>
IP address: 192.0.2.1 (vsys1)
User: localdomain\username
From: SYSLOG
```

5. Log out of the client system.
6. Verify that the firewall deleted the user mapping:

```
> show user ip-user-mapping ip <ip-address>
No matched record
```
Group-Based Reporting in Panorama

Panorama now provides visibility into the activities of user groups in your network through the User Activity report, SaaS Application Usage report, custom reports, and the ACC. Panorama aggregates group activity information from all the firewalls that it manages. This enables you to filter logs and generate reports for groups across your entire network instead of just the groups that individual firewalls monitor. Analyzing group activity helps you understand resource usage and security risks in your network so that you can refine the policies that control access to those resources.

To enable Panorama to collect user group information, you must upgrade your managed firewalls to PAN-OS 8.0. Panorama cannot collect group information from firewalls running earlier PAN-OS releases.

- Filter Logs by Group on Panorama
- Configure a Group Activity Report on Panorama

Filter Logs by Group on Panorama

STEP 1 | Select Panorama > Setup > Management, edit the Panorama Settings, and Enable reporting and filtering on groups so that Panorama can locally store user and user group information that it receives from firewalls.
STEP 2 | Configure device groups so that Panorama can receive user group information from one Master Device (firewall) in each device group. You must enable Panorama to Store users and groups from Master Device.

STEP 3 | Filter logs by user group.

For example, to filter the Traffic logs, select Monitor > Logs > Traffic and Add Filter (). When you configure the query, set the Attribute to Source User and set the Value to the name of the user group.
Configure a Group Activity Report on Panorama

Perform the following steps to generate a Group Activity report on Panorama. Group Activity reports summarize the web activities of user groups in your network.

You can also see group activity in a SaaS Application Usage report, custom report, or Application Command Center (ACC).

STEP 1 | Select Panorama > Setup > Management, edit the Panorama Settings, and Enable reporting and filtering on groups so that Panorama can locally store user and user group information that it receives from firewalls.
STEP 2 | Configure device groups so that Panorama can receive user group information from one Master Device (firewall) in each device group. You must enable Panorama to Store users and groups from Master Device.
STEP 3 | Select Monitor > PDF Reports > User Activity Report, Add a Group Activity report, set the Type to Group, select a Group Name, and specify the Time Period for the report.

You can generate the report:

- **Immediately**—Run Now and download the report.
- **At the same time as other saved reports**—Click OK, select Commit > Commit to Panorama, and Commit your changes.
App-ID Features

- SaaS Application Visibility for User Groups
SaaS Application Visibility for User Groups

For better visibility into SaaS activity on your network, PAN-OS 8.0 includes enhancements to the SaaS Application Usage report. In addition, the ACC and custom reports now help you identify, manage, and control risky SaaS application usage on your network:

- SaaS Application Usage PDF Report
- SaaS Visibility Enhancements in the ACC

View a short video on these enhancements.

SaaS Application Usage PDF Report

The SaaS Application Usage PDF report (introduced in PAN-OS 7.1) was enhanced in PAN-OS 8.0 to highlight application usage by groups of users (departments). You can generate the report to view activity for user groups across all security zones on the firewall or Panorama, monitor activity for specific user group(s), or report on SaaS activity for a user group(s) within a specific zone. The first part of the 10-page PDF report (formerly 8-page report) includes two new pages that showcase the top user groups that use the largest number of SaaS applications, and the top user groups that transfer the largest volume of data through sanctioned and unsanctioned SaaS applications.

And, you can now generate a custom report that depicts the number of SaaS applications used on your network and the unique user count by application. The unique user count is a new column in the report and the SaaS application characteristic (is SaaS) is a filter in the query builder.

- Generate the SaaS Application Usage report for a specific security zone or user group(s).
- Create a custom report to view the number of unique users who use SaaS applications (or a specific application such as Box) on your network.
 1. Select Monitor > Manage Custom Reports, and click Add.
2. To view the number of unique users who use SaaS applications on your network, select Users from the Available Column and add it to the Selected Column. Then, use the query builder to add the application characteristic equals is saas., as shown below:

![Query builder screenshot](image)

SaaS Visibility Enhancements in the ACC

ACC Enhancements for SaaS Application Visibility—The ACC has a new global filter to assess application activity on your network by risk and sanctioned state. When you apply the filter, all the ACC tabs pivot on risk state or sanctioned state so that you can determine the relative security risks associated with the SaaS applications traversing your network. You can also set any tab as the default tab so that the ACC layout retains your filter preferences, the next time you log in; export the tab, with your widget and local filters, and share it with another firewall administrator.

If, for example, you want all your firewall administrators to use the Network Activity tab as the default tab with the application usage widget filtered on user count and the user activity widget filtered on application usage. You can export and share the tab with the other firewall administrators so that they can all consistently monitor for risk exposure on your network.

- **View the new colors in the Application Usage widget (ACC > Network Activity).**

 Sanctioned applications are depicted in green, and unsanctioned applications are blue. Applications that are not consistently tagged as sanctioned or unsanctioned across all device groups or virtual systems are yellow.
• Use the **Application View** global filter to view applications by risk or by sanctioned state.

• View the changes in the **ACC > Network Activity** tab:
 • Filter by user count in the Application Usage widget.
 • Filter by application count in the User Activity widget.

• Work with the ACC tabs. Click the edit icon in a tab to:
 • Set a tab as default.
 • Set a filter for Saas applications.

• Export a tab.
 You can share the tab as a .txt file with another administrator.

• Import a tab.
 Select the icon along the list of tabs, and add a name and click the import icon, browse to select the .txt file.
Decryption Features

- Management for Certificates Excluded from Decryption
- Perfect Forward Secrecy (PFS) for Inbound SSL Sessions
Management for Certificates Excluded from Decryption

You now have increased flexibility and control to manage traffic excluded from decryption. Centralized management for decryption exclusions allows you to:

- View the applications and services that the firewall does not decrypt. Palo Alto Networks provides predefined decryption exclusions to indicate applications and services that do not function correctly when the firewall decrypts them. The Applications and Threats content update (or the Applications content update, if you do not have a Threat Prevention license) include updates and additions to predefined decryption exclusions.
- Exclude a server from decryption based on the server hostname. All traffic originating from or destined to that server is excluded from decryption. Certificates enabled as SSL exclude certificates in PAN-OS 7.1, where a targeted server was excluded from decryption based on the CN in the server certificate, are automatically recreated as custom decryption exclusions in PAN-OS 8.0.

Go over the following steps to create a decryption exclusion and to view both custom and predefined exclusions.

STEP 1 | View decryption exclusions.

Select Device > Certificate Management > SSL Decryption Exclusions and view the list of both predefined and custom decryption exclusions.

Entry details show whether the exclusion is predefined or custom, provides a description of the exclusion, and indicates if the exclusion is enabled:
• Location—Indicates that an entry is predefined, or, for custom entries, indicates whether the entry is shared across all virtual systems or if it’s specific to a single virtual system.
• Exclude from decryption—A selected checkbox indicates that the firewall is actively enforcing the decryption exclusion.

STEP 2 | Add a new decryption exclusion, or modify an existing one.
2. Add a new entry, or select an entry to modify it.
3. (Custom exclusions only) Enter the hostname of the website or application you want to exclude from decryption. This hostname is compared against the SNI requested by the client or the CN presented in the server certificate.

To exclude all hostnames associated with a certain domain from decryption, you can use a wildcard asterisk (*). In this case, all sessions where the server presents a CN that contains the domain are excluded from decryption.

Make sure that the hostname field is unique for each custom entry. If a predefined exclusion matches a custom entry, the custom entry takes precedence.
4. Optionally, select Shared to share the exclusion across all virtual systems in a multiple virtual system firewall.
5. Exclude the application from decryption, or clear this checkbox to start decrypting an entry that was previously excluded from decryption.
6. Click OK to save the new exclusion entry.

STEP 3 | Enable or disable one or more exclusions at a time.
2. Select one or more decryption exclusion entries.
3. Click Enable to exclude all selected entries from decryption, or Disable to turn on decryption for the selected entries.

STEP 4 | Remove outdated decryption exclusions.
Palo Alto Networks removes decryption exclusions from the list when they become obsolete (for example, when an application that decryption previously caused to break now supports decryption). However, if a predefined decryption exclusion is disabled, it is not automatically removed the list.

Select Show Obsoletes to check if there are disabled, predefined exclusions on your list that Palo Alto Networks that are no longer needed.
Perfect Forward Secrecy (PFS) for Inbound SSL Sessions

PFS support is now extended to sessions decrypted using SSL Inbound Inspection (PFS support for SSL Forward Proxy was introduced in PAN-OS 7.1). PFS is a secure communication protocol that prevents the compromise of one encrypted session from leading to the compromise of multiple encrypted sessions. With PFS, a server generates unique private keys for each secure session that it establishes with a client. If a server private key is compromised, only the single session established with that key is vulnerable—an attacker cannot retrieve data from past and future sessions because the server establishes each connection with a uniquely generated key.

This extended support for ephemeral Diffie-Hellman (DHE)-based PFS and elliptic curve Diffie-Hellman (ECDHE)-based PFS is enabled by default after the upgrade to PAN-OS 8.0—note that these settings were also enabled by default in PAN-OS 7.1, though in that release version, support covered only SSL Forward Proxy decrypted traffic.

If you use the DHE or ECDHE key exchange algorithms to enable PFS, you cannot use a hardware security module (HSM) to store the private keys used for SSL Inbound Inspection.

STEP 1 | Select **Objects > Decryption Profile, Add** or modify a profile, and select **SSL Decryption > SSL Protocol Settings** to view settings you can use to enable or disable DHE and ECDHE support for decrypted SSL sessions (ECDHE and DHE support are enabled by default).

STEP 2 | To confirm that the PFS settings are being applied to decrypted traffic, select **Decryption > Policies** and scan the Decryption Profile column. Check that the default decryption profile, or a custom profile like the profile in step 1, is attached to a decryption policy rule.

STEP 3 | To learn more about setting up decryption for inbound SSL traffic, get started with SSL Inbound Inspection.
Virtualization Features

- Seamless VM-Series Model Upgrade
- CloudWatch Integration for VM-Series Firewalls on AWS
- Support for NSX Security Tags on the VM-Series Firewall for NSX
- VM-Series Firewall Performance Enhancements
- NSX VM-Series Configuration through Panorama
- VM-Series Bootstrapping with Block Storage
- VM-Series License Deactivation API Key
Seamless VM-Series Model Upgrade

You now have the ability to scale up and scale down the VM-Series capacity as bandwidth and capacity requirements change on your network by upgrading the model license. The upgrade process between different VM-Series models can be done with minimal downtime and intervention. Upgrading the VM-Series capacity does not require a reboot. Additionally, the serial number for the firewall does not change and no configuration is lost. For example, in an MSSP environment, if your tenant requires more capacity than the VM-100 supports, the MSSP can upgrade the firewall to a VM-300 without deactivating the license or changing the serial number of the firewall.

STEP 1 | Enable automatic VM-Series license deactivation. You no longer have to manually deactivate a VM-Series license before upgrading the capacity. Before continuing with your upgrade, Install a License Deactivation API Key.

STEP 2 | Upgrade the license on the Customer Support portal. If you already have an authorization code for your VM-Series model, skip this step.

STEP 3 | Before you initiate the capacity upgrade, verify that you have allocated enough hardware resources to support the new VM-Series model. The process for assigning additional hardware resources differs for each hypervisor.

STEP 4 | Upgrade the capacity.

STEP 5 | Verify that your firewall capacity license upgrade is successful.
CloudWatch Integration for VM-Series Firewalls on AWS

The VM-Series firewall on AWS can now publish native PAN-OS metrics to AWS CloudWatch at a specified time interval. You can use these metrics to make resource-driven decisions, such as take action to launch or terminate instances of the VM-Series firewalls based on usage.

STEP 1 | Assign the appropriate permissions for the AWS Identity and Access Management (IAM) user role that you use to deploy the VM-Series firewall on AWS.

Whether you launch a new instance of the VM-Series firewall or upgrade an existing VM-Series firewall on AWS to PAN-OS 8.0, the IAM role associated with your instance, must have permissions to publish metrics to CloudWatch.

1. On the AWS console, select **IAM > Policies** and click the **Policy Name** link associated with the IAM role you want to modify.
2. Edit the **Policy Document** to include the following permissions to the IAM role.

![Policy Document Image]

STEP 2 | Enable CloudWatch on the VM-Series firewall on AWS.

1. Log in to the web interface on the VM-Series firewall
2. Select **Device > Operations > AWS CloudWatch.**
3. Select **Enable CloudWatch Monitoring.**
4. Enter the **CloudWatch Namespace** to which the firewall can publish metrics. The namespace cannot begin with `AWS`.
5. Set the **Update Interval** to a value between 1-60 minutes. This is the frequency at which the firewall publishes the metrics to CloudWatch. The default is 5 minutes.
6. **Commit** the changes.
Until the firewall starts to publish metrics to CloudWatch, you cannot configure alarms for PAN-OS metrics.

STEP 3 | Verify that you can see the metrics on CloudWatch.
1. On the AWS console, select **CloudWatch > Metrics**, to view CloudWatch metrics by category.
2. From the Custom Metrics drop-down, select the namespace.
3. Verify that you can see PAN-OS metrics in the viewing list.

STEP 4 | Configure alarms and actions for PAN-OS metrics on CloudWatch. For details, refer to the **AWS CloudWatch documentation**.
Support for NSX Security Tags on the VM-Series Firewall for NSX

The VM-Series for NSX now supports the tagging of guest VMs with NSX security tags due to the addition of the source and destination universally unique identifier (UUID) of guest VMs in your NSX deployment. VMware vCenter passes the source and destination UUID to the VM-Series firewall via the Netx API and added to the threat and traffic logs. With this information in the logs, the firewall can be configured to tag infected guest VMs via the NSX Manager API.

Panorama receives predefined payload formats for NSX through content updates. These formats are available in the HTTP Server profile, which you can use to make an API call and trigger an automatic action on the NSX Manager. For example, whenever a threat log of critical severity is generated on the firewall, Panorama uses the API to communicate with the NSX Manager to tag the guest VM as infected. The NSX manager then dynamically moves the guest VM with the infected tag into a quarantined security group.

STEP 1 | Create a dynamic address to be your quarantine dynamic address group.

STEP 2 | Create an HTTP Server Profile to send API calls to NSX Manager. This server profile must send an HTTP PUT request to NSX Manager and use one of the predefined NSX payload formats.

STEP 3 | Define the match criteria for when Panorama will forward logs to the NSX Manager, and attach the HTTP server profile to use.

STEP 4 | Configure an NSX server certificate for Panorama to forward logs to NSX manager. Those server certificates must exported and uploaded to NSX Manager to allow for necessary communication to take place.

STEP 5 | Log in to vCenter and associate a security group with a security tag. The security tag your associate with your quarantine security group must match the payload format you configured in your HTTP Server profile.
VM-Series Firewall Performance Enhancements

PAN-OS 8.0 introduces three new VM-Series firewall models and increased performance, capacity, and efficiency of the existing VM-Series firewall models. The VM-Series firewalls now support a wider range of deployment scenarios and higher volumes of traffic when compared to previous versions of PAN-OS. These enhancements enable three broad use cases—optimized resources for customer-premises equipment (CPE) and network tenant environments, improved performance and efficiency for perimeter and east-west data center traffic, and maximized performance to support network function virtualization (NFV).

To support multitenancy for data centers and service providers, such as Managed Security Service Providers (MSSPs), the VM-Series firewall now supports oversubscription of CPUs as well as a smaller hardware footprint. This allows you to deploy multiple instances of the VM-Series firewall at a higher density on hypervisors running on x86 architecture.

- VM-Series Model Capacity and Performance
- VM-Series System Requirements
- VM-Series Firewall CPU Oversubscription
- DHCP on Management Interfaces and Hypervisor-Assigned MACs

VM-Series Model Capacity and Performance

Use the following information and table to determine capacity and performance for VM-Series firewalls:

- VM-100, VM-200, VM-300, and VM-1000-HV—The capabilities of the VM-200 and VM-1000-HV now match those of the VM-100 and VM-300, respectively. All existing models now support higher performance and much higher capacity than before on an optimized compute footprint.
- VM-500 and VM-700—These new models can utilize a larger compute resource footprint to achieve higher performance and capacity than other VM-Series firewall models.
- VM-50—A new virtual firewall model that delivers lower performance on a small hardware footprint and supports oversubscription of compute resources.

<table>
<thead>
<tr>
<th>VM-Series Model</th>
<th>Sessions</th>
<th>Security Rules</th>
<th>Dynamic IP Addresses</th>
<th>Security Zones</th>
<th>IPSec VPN Tunnels</th>
<th>SSL VPN Tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM-50</td>
<td>50,000</td>
<td>250</td>
<td>1,000</td>
<td>15</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>VM-100</td>
<td>250,000</td>
<td>1,500</td>
<td>2,500</td>
<td>40</td>
<td>1,000</td>
<td>500</td>
</tr>
<tr>
<td>VM-200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VM-300</td>
<td>800,000</td>
<td>10,000</td>
<td>100,000</td>
<td>40</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>VM-1000-HV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VM-500</td>
<td>2,000,000</td>
<td>10,000</td>
<td>100,000</td>
<td>200</td>
<td>4,000</td>
<td>6,000</td>
</tr>
<tr>
<td>VM-700</td>
<td>10,000,000</td>
<td>20,000</td>
<td>100,000</td>
<td>200</td>
<td>8,000</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Use the firewall comparison tool to view the maximum capacities and additional technical information about each VM-Series firewall model.
This release adds I/O enhancements through the support for Data Plane Development Kit (DPDK) for the VM-Series on KVM, ESXi, and AWS and Large receive offload (LRO) for the VM-Series firewall on NSX. Additionally, SR-IOV is now supported for ESXi.

DPDK enhances VM-Series performance by increasing NIC packet processing speed. On the VM-Series firewall, DPDK is enabled by default on KVM and ESXi. If you disable DPDK or it is disabled by default, packet map is used instead.

On AWS, DPDK is disabled by default. HA on AWS requires the adding and deleting of interfaces dynamically, which is not supported in DPDK. If you are not using HA, you can enable DPDK to increase performance.

All data interfaces must be using the same driver to support DPDK.

<table>
<thead>
<tr>
<th>Hypervisor</th>
<th>Virtual Driver</th>
<th>Intel Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESXi</td>
<td>VMXNET3</td>
<td>ixgbe, ixgbevf, i40e, i40evf</td>
</tr>
<tr>
<td>KVM</td>
<td>virtio</td>
<td>ixgbe, ixgbevf, i40e, i40evf</td>
</tr>
<tr>
<td>AWS</td>
<td>—</td>
<td>ixgbevf</td>
</tr>
</tbody>
</table>

LRO is a technique for increasing the inbound throughput on high-bandwidth network connections by decreasing CPU overhead. This release adds support for LRO on the VM-Series firewall on NSX. LRO is disabled by default on new NSX deployments and on upgrade to 8.0. You can enable or disable LRO and view the LRO status through the CLI.

VM-Series System Requirements

To support the increase in performance and scale, the minimum hardware resource requirements have changed.

<table>
<thead>
<tr>
<th>VM-Series Model</th>
<th>Supported Hypervisors</th>
<th>Supported Cores</th>
<th>Minimum Memory</th>
<th>Minimum Hard Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM-50 VM-100</td>
<td>ESXi, KVM, Hyper-V</td>
<td>2</td>
<td>4.5GB</td>
<td>32GB</td>
</tr>
<tr>
<td>VM-200 VM-300</td>
<td>ESXi, KVM, Hyper-V, AWS, Azure, NSX</td>
<td>2</td>
<td>6.5GB</td>
<td>60GB</td>
</tr>
<tr>
<td>VM-1000-HV VM-500</td>
<td>ESXi, KVM, Hyper-V, AWS, Azure, NSX</td>
<td>2, 4</td>
<td>9GB</td>
<td>60GB</td>
</tr>
<tr>
<td>VM-500</td>
<td>ESXi, KVM, Hyper-V, AWS, Azure, NSX</td>
<td>2, 4, 8</td>
<td>16GB</td>
<td>60GB</td>
</tr>
</tbody>
</table>
The way the VM-Series firewall utilizes allocated cores has changed in 8.0. The number of cores assigned to the management plane and those assigned to the dataplane differs depending on the total number of cores assigned to the VM-Series firewall. If you assign more cores than those officially supported for the model, any additional cores are assigned to the management plane.

<table>
<thead>
<tr>
<th>Supported Cores</th>
<th>Management Plane Cores</th>
<th>Dataplane Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

VM-Series Firewall CPU Oversubscription

This release introduces support for CPU oversubscription at ratios of 2:1, 3:1, 4:1, or 5:1 (maximum) on all VM-Series models. For example, a host machine with 16 physical CPU and at least 180GB of memory (40 \times 4.5GB) can support up to 40 instances to the VM-50 at a 5:1 ratio. Each VM-50 requires two vCPUs and five VM-50s can be associated with each pair of CPUs. When planning your deployment, consider other functions, such as virtual switches, and guest machines on the host that require hardware resources of their own so they have the requisite hardware to operate.

Beyond meeting the minimum VM-Series System Requirements, no additional configuration is required to take advantage of oversubscription. Deploy the VM-Series as normal and resource oversubscription happens automatically.

DHCP on Management Interfaces and Hypervisor-Assigned MACs

To aid in the deployment of large quantities of VM-Series firewalls, the VM-Series now has DHCP on management interfaces and hypervisor-assigned MAC addresses enabled by default on new installations with PAN-OS 8.0. With DHCP enabled on management interfaces, the VM-Series firewall is accessible immediately; there is no need to configure a management IP address on each firewall individually.

By enabling the use of a hypervisor-assigned MAC address, you do not need to enable promiscuous mode on the virtual switches in a layer3 deployment. VM-Series firewalls upgraded to 8.0 from a previous version do not have these enabled by default, you must perform a factory reset after upgrading or enable manually.
NSX VM-Series Configuration through Panorama

Beginning with 8.0, you can manage all security-related configuration for the VM-Series NSX integration through Panorama. The new workflow consolidates security configuration on Panorama, and decouples the need for continuous interaction between security and virtualization administrators. Panorama now provides NSX Manager with the contextual information required to secure traffic from guest virtual machines in SDDC environments. Dynamic address groups on Panorama map to security groups on NSX Manager, zones map to service profiles, and security policy rules map to steering rules.

These configuration changes take advantage of the new extensible plug-in architecture in Panorama. All the interface related to NSX integration are now part of the NSX plug-in and only display in Panorama when the plug-in is installed.

Additionally, Panorama 8.0.5 and later includes support for VMware NSX plugin version 2.0.0 that allows you to manage up to 16 NSX Managers using a single Panorama server instead of one Panorama server per NSX Manager. With this capability, you can now configure and manage multiple NSX Managers in a single location; it eliminates the need to replicate common configuration many times on multiple Panorama servers.

STEP 1 | **Install a VM-Series License Deactivation API Key** on Panorama before configuring the VM-Series Edition on NSX.

Deleting the Palo Alto Networks Service Deployment on NSX Manager automatically triggers license deactivation. A license API key is required to successfully deactivate the VM-Series license.

STEP 2 | **Install the VMware NSX Plugin** to access the configuration options for managing the VM-Series firewall on NSX.
VM-Series Bootstrapping with Block Storage

You can now bootstrap the VM-Series firewall on ESXi, KVM, and Hyper-V using block storage. Support for block storage gives you an alternative to using an ISO or CD-ROM for deploying and attaching a bootstrap package to new instances of the VM-Series firewall.

Similar to bootstrapping the VM-Series in Azure, bootstrapping these other hypervisors using block storage requires that you create a Linux virtual machine to format and prepare the bootstrap package. See the VM-Series Deployment Guide for information about creating a bootstrap package.

STEP 1 | Create the bootstrap package and the block device. How you create the block device is different for each hypervisor:

- **ESXi**
- **KVM**
- **Hyper-V**

STEP 2 | Deploy the firewall.

STEP 3 | Attach the bootstrap package to the firewall.

STEP 4 | Verify bootstrap completion.
VM-Series License Deactivation API Key

You are now required to install a license deactivation API key and enable the firewall to verify the identity of PAN update servers to deactivate a VM-Series firewall license. These changes provide additional security to the connection between your firewall or Panorama and the Palo Alto Networks Update and License server. You can retrieve your license API key from the Customer Support Portal and configure it using the CLI on the firewall and Panorama.

The Verify Update Server Identity option under Device > Setup > Services is enabled by default. Before deactivating an VM-Series firewall, verify that this option is enabled.

STEP 1 | Retrieve the license deactivation API key from the Customer Support Portal.

STEP 2 | Use the CLI to install the API key.

```
request license api-key set key <key>
```

Seamless VM-Series Model Upgrade and NSX VM-Series Configuration through Panorama both require the use of a license deactivation API key.

STEP 3 | Use the CLI to delete an installed API key if you need to replace it.

```
request license api-key delete
```

To deactivate a VM-Series firewall after deleting the API key, you must install a new one.

STEP 4 | Check that the firewall can Verify Update Server Identity at Device > Setup > Services.

STEP 5 | After installing the license API key, deactivate the VM-Series firewall as normal.
Networking Features

- Tunnel Content Inspection
- Multiprotocol BGP
- Zone Protection for Multi-path TCP (MPTCP) Evasions
- Zone Protection for Non-IP Protocols on a Layer 2 VLAN or Virtual Wire
- Zone Protection for SYN Data Payloads
- Static Route Removal Based on Path Monitoring
- IPv6 Router Advertisement for DNS Configuration
- NDP Monitoring for Fast Device Location
- Hardware IP Address Blocking
- Packet Buffer Protection
- Reconnaissance Protection Whitelist
- IKE Peer and IPSec Tunnel Capacity Increases
Tunnel Content Inspection

The firewall can now perform tunnel content inspection on the traffic content of cleartext tunnel protocols:

- Generic Routing Encapsulation (GRE) (RFC 2784)
- Non-encrypted IPSec traffic [NULL Encryption Algorithm for IPSec (RFC 2410) and transport mode AH IPSec]
- General Packet Radio Service (GPRS) Tunneling Protocol for User Data (GTP-U)

You can use tunnel content inspection to enforce Security, DoS Protection, and QoS policies on traffic in these types of tunnels and traffic nested within another cleartext tunnel. You can view inspected tunnel information to verify that tunneled traffic complies with your corporate security and usage policies.

- In enterprise environments, you can inspect traffic tunneled using GRE or non-encrypted IPSec. For security, QoS, and reporting reasons, you want to inspect the traffic inside the tunnel.
- In Service Provider environments, you can use GTP-U to tunnel data traffic from mobile devices. You want to inspect the inner content without terminating the tunnel protocol, and you want to record user data from users.

All firewall models support tunnel content inspection of GRE and non-encrypted IPSec. Only PA-5200 Series and VM-Series firewalls support tunnel content inspection of GTP-U.

The firewall supports tunnel content inspection on Ethernet interfaces and subinterfaces, AE interfaces, VLAN interfaces, and VPN and LSVPN tunnels. Tunnel content inspection is supported in Layer 3, Layer 2, virtual wire, and tap deployments. Tunnel content inspection works on shared gateways and on virtual system-to-virtual system communications.

STEP 1 | Create a Security policy to allow packets through the tunnel that use a specific application, such as GRE.

STEP 2 | Create a Tunnel Inspection policy that specifies the criteria for packets that meet the policy, the tunnel protocols to inspect, the maximum level of encapsulation to inspect, and separate security policies for tunnel zones, if you choose.

Configure Tunnel Content Inspection.

STEP 3 | Use the ACC to view inspected tunnel activity.

View Inspected Tunnel Activity.

STEP 4 | View Tunnel Inspection logs and other logs for tunnel inspection information.

View Tunnel Information in Logs.

STEP 5 | Create a custom report about Tunnel Inspected traffic.

Create a Custom Report Based on Tagged Tunnel Traffic.
Multiprotocol BGP

BGP supports IPv4 unicast prefixes, but a BGP network that uses IPv4 multicast routes or IPv6 unicast prefixes needs Multiprotocol BGP (MP-BGP) in order to exchange routes of address types other than IPv4 unicast. The firewall now supports MP-BGP, which means you have IPv6 connectivity to your BGP networks that use native IPv6 or dual stack IPv4 and IPv6. Service providers can offer IPv6 service to their customers, and enterprises can use IPv6 service from service providers.

MP-BGP uses Network Layer Reachability Information (NLRI) in a Multiprotocol Reachable NLRI attribute that the firewall sends and receives in BGP Update packets. The attribute contains information about the destination prefix:

- The Address Family Identifier (AFI) indicates that the destination prefix is an IPv4 or IPv6 address.
- The Subsequent Address Family Identifier (SAFI) in PAN-OS indicates that the destination prefix is a unicast or multicast address (if the AFI is IPv4), or that the destination prefix is a unicast address (if the AFI is IPv6). PAN-OS does not support IPv6 multicast.

If you enable MP-BGP for IPv4 multicast or if you configure an IPv4 multicast static route, the firewall supports separate unicast and multicast route tables for static routes. You might want to separate unicast and multicast traffic going to the same destination because, for example, your multicast traffic is critical, so you need it to take fewer hops or undergo less latency.

You can also exercise more control over how BGP functions by configuring BGP to use routes from only the unicast or multicast route table (or both) when BGP imports or exports routes, sends conditional advertisements, or performs route redistribution or route aggregation. You can also now Redistribute IPv6 Routes from BGP and OSPFv3.

- Enable MP-BGP for a peer to use IPv4 or IPv6 unicast.
 Configure a BGP Peer with MP-BGP for IPv4 or IPv6 Unicast

- Enable MP-BGP for a peer to use IPv4 multicast.
 Configure a BGP Peer with MP-BGP for IPv4 Multicast

- Create a static route and install it in the unicast or multicast route table only.
 Configure a Static Route

- View the unicast or multicast route table or the forwarding table.
 View the BGP RIB Out table (which shows the routes that the firewall sends to BGP neighbors).
 Configure a BGP Peer with MP-BGP for IPv4 or IPv6 Unicast
Zone Protection for Multi-path TCP (MPTCP) Evasions

You can now enable or disable Multi-path TCP (MPTCP) globally or for each network zone. MPTCP is an extension of TCP that allows a client to simultaneously use multiple paths (instead of a single path) to connect with a destination host. MPTCP especially benefits mobile users, enabling them to maintain dual connections to both Wi-Fi and cellular networks as they move—this improves both the resilience and quality of the mobile connection and enhances the user experience. However, MPTCP can also potentially be leveraged by attackers as part of an evasion technique. This feature provides the flexibility to enable or disable MPTCP for all firewall traffic or for individual network zones, based on the visibility, performance, and security requirements for each network zone.

By default, MPTCP support is disabled on the firewall, and the firewall converts MPTCP connections to regular TCP connections. However, you can choose to enable MPTCP support globally or for certain network zones.

- For all firewall traffic.
 You can use the following CLI command to enable or disable MPTCP support for firewall traffic:

```
set deviceconfig setting tcp strip-mptcp-option [no | yes]
```

 - Enter no to enable MPTCP support (the firewall does not remove the MPTCP option field from packets).
 - (Default) Enter yes to convert MPTCP connections to TCP connections (the firewall removes the MPTCP option field from packets).

- For a network zone.

 Zone protection profiles allow you to set up security between network zones. Following the upgrade to PAN-OS 8.0, both existing and new zone protection profiles are set to support MPTCP by default.

 Take the following steps to enable or disable MPTCP support for a specific network zone:

 1. Select Network > Network Profiles > Zone Protection and modify or Add a zone protection profile.
 2. Select Packet Based Attack Protection > TCP Drop.
 3. Select one of the Multipath TCP (MPTCP) Options to apply to the network zone:
 - no—Enable MPTCP support (do not strip the MPTCP option).
 - yes—Disable MPTCP support (strip the MPTCP option). With this option configured, MPTCP connections are converted to standard TCP connections, as MPTCP is backwards compatible with TCP.
 - global—Support MPTCP based on the global MPTCP setting For all firewall traffic.
 4. Click OK to save the profile.

 If MPTCP support is disabled globally, but you want to support MPTCP for certain network zones, make sure that you enable MPTCP for each zone through which traffic traverses.
Zone Protection for Non-IP Protocols on a Layer 2 VLAN or Virtual Wire

You can now use a Zone Protection profile to block or allow non-IP protocols between security zones on a Layer 2 VLAN or a virtual wire. You can also block or allow such protocols between interfaces within a single zone on a Layer 2 VLAN. Controlling non-IP protocols for a zone reduces security risks and facilitates regulatory compliance by preventing these less secure protocol packets from entering a zone or interface in a zone where they don't belong.

Examples of non-IP protocols that you can control are AppleTalk, Banyan VINES, LLDP, NetBEUI, Spanning Tree, and Supervisory Control and Data Acquisition (SCADA) systems such as Generic Object Oriented Substation Event (GOOSE), among many others.

Enhance your zone protection by configuring protocol protection, which lists non-IP protocols for the firewall to either block (exclude) or allow (include). Apply the Zone Protection profile to an ingress security zone for physical interfaces or AE interfaces.

For example, a firewall in a Layer 2 VLAN can be divided into two subinterfaces, each belonging to a VLAN and a zone. You can whitelist the GOOSE protocol for one zone and blacklist it for the other zone, as shown in the following figure:

If you don’t implement a Zone Protection profile with non-IP protocol control, the firewall allows non-IP protocols in a single zone to go from one Layer 2 interface to another. In the following intrazone example, blacklisting LLDP packets ensures that LLDP for one network does not discover a network reachable through another interface in the zone. The Layer 2 VLAN is divided into two subinterfaces and belongs to the User zone. By applying a Zone Protection profile that blocks LLDP to the User zone:

- Subinterface .7 blocks LLDP from its switch to the firewall at the red X on the left, preventing that traffic from reaching subinterface .8.
- Subinterface .8 blocks LLDP from its switch to the firewall at the red X on the right, preventing that traffic from reaching subinterface .7.
Each Include List or Exclude List you configure for protocol protection supports up to 64 Ethertype entries, identified by their IEEE hexadecimal Ethertype code. Locate the Ethertype codes you want to use at sources such as:

- http://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
- http://standards-oui.ieee.org/ethertype/eth.txt
- http://www.cavebear.com/archive/cavebear/Ethernet/type.html

The firewall supports multiple Zone Protection profiles, one per zone. Protocol protection doesn't let you block IPv4 (Ethertype 0x0800), IPv6 (0x86DD), ARP (0x0806), or VLAN-tagged frames (0x8100). These Ethertypes are always implicitly allowed in an Include List without listing them and implicitly allowed even if you configure an Exclude List.

STEP 1 | Configure non-IP Protocol Protection in a Zone Protection profile and apply the profile to an ingress security zone.

STEP 2 | Access the CLI to view the number of non-IP packets the firewall has dropped based on protocol protection.

```plaintext
> show counter global name pkt_nonip_pkt_drop
> show counter global name pkt_nonip_pkt_drop delta yes
```
Zone Protection for SYN Data Payloads

You can now use a Zone Protection profile for Packet Based Attack Protection to drop TCP SYN and SYN-ACK packets that contain data in the payload during a three-way handshake. A Zone Protection profile by default is set to drop SYN and SYN-ACK packets with data.

The TCP Fast Open option ([RFC 7413](https://tools.ietf.org/html/rfc7413)) preserves the speed of a connection setup by including data in the payload of SYN and SYN-ACK packets. A Zone Protection profile treats handshakes that use the TCP Fast Open option separately from other SYN and SYN-ACK packets; the profile by default is set to allow the handshake packets if they contain a valid Fast Open cookie.

You can control how the Zone Protection profile handles these three options (SYN packets with data in the payload, SYN-ACK packets with data in the payload, and the TCP Fast Open option) independently of each other. As an alternative to the default Zone Protection behavior, you can create a Zone Protection profile to strip the TCP Fast Open option and data payload from SYN and SYN-ACK packets.

If you have existing Zone Protection profiles in place when you upgrade to PAN-OS 8.0, the three default settings will apply to each profile and the firewall will act accordingly.

STEP 1 Create a Zone Protection profile for Packet Based Attack Protection.

STEP 2 Configure the profile to drop TCP SYN and SYN-ACK packets with data in the payload.

1. Select *TCP Drop*.
2. Select *TCP SYN with Data* to cause the firewall to drop SYN packets that contain data in the payload. Default is enabled.
3. Select *TCP SYNACK with Data* to cause the firewall to drop SYN-ACK packets that contain data in the payload. Default is enabled.

STEP 3 Configure the profile to preserve TCP Fast Open support.

1. In the Strip TCP Option section, to allow a SYN or SYN-ACK with data and a cookie in the TCP Fast Open option (not strip the TCP Fast Open option or data), leave *TCP Fast Open* disabled (unchecked), which is the default.

 In a Zone Protection profile with Flood Protection against SYN packets, you can configure the firewall to take action against a SYN flood by enabling SYN Cookies. In a zone protected by the SYN Cookies action, when the firewall receives a SYN from a client, rather than immediately sending the SYN to the server, the firewall generates a cookie (on behalf of the server) to send in the SYN-ACK to the client. The client
responds with its ACK and the cookie; upon this validation the firewall then sends the SYN to the server.

Because the firewall responds to the client on behalf of the server, it removes all data from the SYN (including TCP Fast Open) before responding to the client with its SYN-ACK. That is, SYN Cookies does not support TCP Fast Open when the firewall acts as a SYN proxy for the server. If you need TCP Fast Open support, don’t use SYN Cookies as a SYN flood mitigation method; use Random Early Drop instead.

2. Click OK.

STEP 4 | Apply the Zone Protection profile to a security zone that is assigned to interfaces you want to protect.

1. Select Network > Zones and select the zone where you want to assign the Zone Protection profile.
2. Add the Interfaces belonging to the zone.
3. For Zone Protection Profile, select the profile you created.
4. Click OK.

STEP 5 | Commit.

Click Commit.

STEP 6 | Troubleshoot zone protection for a zone by viewing the TCP SYN, SYNACK and TCP Fast Open settings and the number of packets the firewall has dropped for each setting.

Access the CLI.

`> show zone-protection zone <zone-name>`

The following is sample output:

```
> show zone-protection zone user
---------------------------
Number of zones with protection profile: 1
---------------------------
Zone user, vsys vsys1, profile dos-protect-syn
---------------------------
IPv(4/6)filter:
discard-tcp-syn-with-data enabled: yes, packet dropped: 10
discard-tcp-synack-with-data: enabled: yes, packet dropped: 20
strip-tcp-fast-open-and data: enabled: yes, packet dropped: 30
```
Static Route Removal Based on Path Monitoring

You can now use path monitoring so the firewall removes static route table entries when the link connection fails on the firewall interface to which the static route is assigned. Without path monitoring, if a path failure occurs upstream from the firewall, but the customer-premises equipment (CPE) keeps the link artificially active, the firewall can’t detect the failure and doesn't update the static route in the route table; the firewall blackholes the traffic.

To inform the firewall when a static route is down, use static route removal based on path monitoring to detect when the path to one or more monitored destinations has gone down. The firewall can then reroute traffic using an alternative route.

The firewall performs path monitoring by sending ICMP ping messages to one or more monitored destinations that you determine are reliable and reflect the availability of the static route. If pings to any (or all) of the monitored destinations fail, the firewall considers the static route down too and removes it from the RIB and FIB. The firewall selects an alternative static route to the same destination from the RIB and places it in the FIB. The firewall can reinstate a static route that has come back up, and then compare metrics of routes to the same destination to decide which route goes in the FIB.

Path monitoring is desirable to avoid blackholing traffic for:

- A static or default route.
- A static or default route redistributed into a routing protocol.
- A static or default route when one peer does not support BFD. (The best practice is not to enable both BFD and path monitoring for a single interface.)
- A static or default route instead of using PBF path monitoring, which doesn't remove a failed static route from the RIB, FIB, or redistribution policy.

- Enable path monitoring and configure monitored destinations for a static route. View the RIB and FIB to verify that the static route is removed.

Configure Path Monitoring for a Static Route
IPv6 Router Advertisement for DNS Configuration

Neighbor Discovery Protocol (NDP) functions for IPv6 in a capacity similar to ARP for IPv4. The firewall implementation of Neighbor Discovery (ND) allows you to provision IPv6 hosts with the Recursive DNS Server (RDNSS) and DNS Search List (DNSSL) Options. You configure these DNS Options on the firewall so the firewall can provision your IPv6 hosts; therefore you don’t need a separate DHCPv6 server to provision the hosts. The firewall sends IPv6 Router Advertisements (RAs) containing these options to IPv6 hosts as part of their DNS configuration to fully provision them to reach internet services. RFC 6106, IPv6 Router Advertisement Options for DNS Configuration, describes the options.

- **Recursive DNS Server Addresses**—Recursive DNS refers to a series of DNS requests by an RDNS Server to resolve a domain name with an IP address. Configure the addresses of RDNS Servers so the firewall can advertise them and thus provision IPv6 hosts with the addresses of RDNS servers that can resolve their DNS queries. A single IPv6 RA uses one RDNS Server Option with multiple addresses and the same lifetime, or multiple RDNS Server Options with different lifetime values.

- **DNS Search List**—Configure a list of domain names (suffixes) that you want to advertise to a DNS client. The firewall thus provisions the DNS client to use the suffixes in its unqualified DNS queries. The DNS client appends the suffixes, one at a time, to an unqualified domain name before entering the name into a DNS query, thereby using a fully qualified domain name (FQDN) in the query. For example, if a user tries to submit a DNS query for the name "quality" without a suffix, the DNS client appends a period and the first DNS suffix from the DNS Search List to the name and transmits a DNS query. If the first DNS suffix on the list is "company.com", the resulting DNS query is for the FQDN "quality.company.com".

 If the DNS query fails, the client appends the second DNS suffix from the list to the unqualified name and transmits a new DNS query. The client uses the DNS suffixes in order until a DNS lookup succeeds (ignoring the remaining suffixes) or the client has tried all suffixes on the list. A single IPv6 RA uses one DNS Search List Option with multiple domain names and the same lifetime, or multiple DNS Search List Options with different lifetimes.

 The capability of the firewall to send IPv6 RAs for DNS configuration allows the firewall to perform a role similar to DHCP, and is unrelated to the firewall being a DNS proxy, DNS client or DNS server.

- **Configure Layer 3 Interfaces** on the firewall to send IPv6 Router Advertisements, and specify the RDNS Server addresses and DNS suffixes for the firewall to advertise from this interface.

 IPv6 Router Advertisement for DNS Configuration is supported for Ethernet interfaces, subinterfaces, Aggregated Ethernet interfaces, and Layer 3 VLAN interfaces on all PAN-OS firewall models.

Manage IPv6 Hosts Using NDP
NDP Monitoring for Fast Device Location

The firewall now provides NDP monitoring. You can quickly track a device and user who has violated a security policy rule by viewing, in one location, the IPv6 addresses of devices on the link local network, their MAC address, associated username from User-ID (if the firewall has a User-ID mapping), reachability Status of the address, and Last Reported date and time the NDP monitor received a Router Advertisement from this IPv6 address. The username is on a best-case basis; there can be many IPv6 devices on a network with no username, such as printers, fax machines, servers, etc. You need the MAC address that corresponds to the IPv6 address in order to trace the MAC address back to a physical switch or Access Point.

NDP monitoring is not guaranteed to discover all devices because there could be other networking devices between the firewall and the client that filter out NDP or Duplicate Address Detection (DAD) messages. The firewall can monitor only the devices that it learns about on the interface.

NDP monitoring also monitors Duplicate Address Detection (DAD) packets from clients and neighbors. You can also monitor IPv6 ND logs to make troubleshooting easier.

NDP monitoring is supported for Ethernet interfaces, subinterfaces, Aggregated Ethernet interfaces, and VLAN interfaces on all PAN-OS models.

Enable NDP Monitoring and view information such as the IPv6 address of a neighbor the firewall has discovered, the corresponding MAC address, corresponding User ID (on a best-case basis), reachability Status of the address, and Last Reported date and time this NDP Monitor received an RA from this IP address.

![NDP Monitoring for Fast Device Location](image-url)
Hardware IP Address Blocking

When the firewall blocks a source IP address, such as when you configure a Classified DoS Protection policy rule with the Action to Protect, or a Security policy with a Vulnerability Protection profile, the firewall automatically blocks that traffic in hardware before those packets use CPU or packet buffer resources.

Hardware IP address blocking is supported on PA-3060 firewalls, PA-3050 firewalls, PA-5000 Series firewalls, PA-5200 Series firewalls, and PA-7000 Series firewalls.

You can Monitor Blocked IP Addresses, for example to get more information about an IP address on the block list, change how long hardware blocks IP addresses, and delete an IP address from the list if you think it shouldn’t be blocked.

STEP 1 | View block list entries.

1. Select **Monitor > Block IP List**.

 Entries on the block list indicate whether they were blocked by hardware (hw) or software (sw).

2. To view details about an address on the block list, hover over a Source IP address and click the down arrow link. Click the **Who Is** link, which displays Network Solutions Who Is information about the address.

 ![BlockIP_list.png](attachment:BlockIP_list.png)

STEP 2 | Delete block list entries.

You might want to delete an entry if you determine an IP address shouldn’t be blocked. You should then revise the policy rule that caused the firewall to block the address.

1. Select **Monitor > Block IP List**.
2. Select one or more entries and click **Delete**.
Packet Buffer Protection

To protect your firewall and network from single source denial of service (DoS) attacks that can overwhelm its packet buffer and cause legitimate traffic to drop, you can configure packet buffer protection. Packet buffer protection settings are configured globally and then applied per ingress zone. The firewall monitors how sessions utilize the packet buffer and then takes action against the session if it exceeds a configured percentage of utilization. As the various thresholds are met, the firewall takes increasingly severe action against the offending session or IP address.

In addition to monitoring the buffer utilization of individual sessions, packet buffer protection can also block an IP address if certain criteria are met. While the firewall monitors the packet buffers, if it detects a source IP address rapidly creating sessions that would not individually be seen as an attack, action is taken against that address.

STEP 1 | Configure the global Packet Buffer Protection thresholds by selecting Device > Setup > Sessions and Editing the session settings.

STEP 2 | Enable Packet Buffer Protection on an ingress zone by selecting Network > Zones and clicking the name of a zone.
Reconnaissance Protection Whitelist

While ports scanning can be used for legitimate network monitoring purposes, it can also be used by attackers to search for an entry point into your network. To prevent such scanning attacks while still allowing you to use port scans, you can configure a source address exclusion whitelist. IPv4 or IPv6 IP addresses added to this whitelist are not blocked by the firewall when performing a port scan or host sweep. Any source address attempting to scan ports on your network are blocked.

STEP 1 | Select Network > Network Profiles > Zone Protection > Reconnaissance Protection to add a source address exclusion whitelist to your zone protection Profile.

STEP 2 | Add an address to your source address exclusion whitelist. You add up to 20 IP addresses or netmask address objects.
IKE Peer and IPsec Tunnel Capacity Increases

The PA-7000 Series, PA-5000 Series, and PA-3000 Series firewalls now support more IKE peers and IPsec tunnels than in prior releases. The following table provides the capacities:

<table>
<thead>
<tr>
<th></th>
<th>PA-7000-20GXM-NPC</th>
<th>PA-7000-20GQXM-NPC</th>
<th>PA-7000-20G-NPC</th>
<th>PA-7000-20GQ-NPC</th>
<th>PA-5000 Series</th>
<th>PA-3000 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKE Peers</td>
<td>4,000*</td>
<td>2,000*</td>
<td>2,000</td>
<td>2,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPsec Tunnels</td>
<td>12,000*</td>
<td>8,000*</td>
<td>8,000</td>
<td>3,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The capacities shown for PA-7000 Series firewalls are per chassis, regardless of how many Network Processing Cards (NPCs) are installed in the chassis. If a PA-7000 Series firewall uses only PA-7000-20GXM-NPC or PA-7000-20GQXM-NPC cards in the chassis, the higher capacities apply; otherwise, the lower capacities for the chassis apply.

Use the CLI operational command `show vpn ipsec-sa summary` to view summary information about IPsec tunnels.

For better throughput and faster commit times, distribute the total number of IKE peers and IPsec tunnels among multiple interfaces.
GlobalProtect Features

- Clientless VPN
- IPv6 for GlobalProtect
- Split Tunnel to Exclude by Access Route
- External Gateway Priority by Source Region
- Internal Gateway Selection by Source IP Address
- GlobalProtect Agent Login Enhancement
- Authentication Policy and Multi-Factor Authentication for GlobalProtect
- SAML 2.0 Authentication for GlobalProtect
- Restrict Transparent Agent Upgrades to Internal Network Connections
- AirWatch MDM Integration
- Enhanced Always-On VPN for Android
- Resilient VPN Connection
- Gateway Selection Enhancement
- DNS Query Enhancement
Clientless VPN

GlobalProtect Clientless VPN is now available! Clientless VPN provides secure remote access to common enterprise web applications that use HTML, HTML5, and Javascript technologies. Users have the advantage of secure access from SSL-enabled web browsers without installing GlobalProtect client software. This is useful when you need to enable partner or contractor access to applications, and to safely enable unmanaged assets, including personal devices.

You can configure the GlobalProtect portal landing page to provide access to web applications based on users and user groups and also allow single-sign on to SAML-enabled applications. Supported operating systems are Windows, Mac, iOS, Android, Chrome, and Linux. Supported browsers are the latest versions of Chrome, Internet Explorer, Safari, and Firefox.

This feature also requires you to install a GlobalProtect subscription on the firewall that hosts the Clientless VPN from the GlobalProtect portal. You also need the GlobalProtect Clientless VPN dynamic updates to use this feature. Refer to Activate Licenses and Subscriptions and Install Content and Software Updates.

When you configure Clientless VPN, remote users can log in to the GlobalProtect portal using a web browser and launch the web applications you publish for the user. Based on users or user groups, you can allow users to access a set of applications that you make available to them, or allow them to access additional corporate applications.

Figure 2: Sample Applications Landing Page for Clientless VPN
Figure 3: Configure Clientless VPN Applications

To configure Clientless VPN, follow these steps.

STEP 1 | Make sure you have a GlobalProtect subscription and the **GlobalProtect Clientless VPN** dynamic updates needed to use this feature.

STEP 2 | Configure the Clientless VPN applications and applications groups. The GlobalProtect portal displays these applications on the landing page that users see when they log in.

STEP 3 | Configure the GlobalProtect Portal to provide the Clientless VPN service.

STEP 4 | Map users and user groups to applications. This mapping controls which applications users or user groups can launch from a GlobalProtect Clientless VPN session. For information on qualified applications, see **Supported Technologies**.

STEP 5 | Specify the security settings for a Clientless VPN session.

These settings control the authentication and encryption algorithms for the SSL sessions between the firewall and the published applications.

STEP 6 | If you need to reach the applications through a proxy server, specify one or more proxy server configurations to access the applications.

STEP 7 | Specify any special treatment for application domains. In some cases, the application may have pages that do not need to be accessed through the portal.

STEP 8 | Configure a Security policy rule to enable users to access the published applications.
IPv6 for GlobalProtect

GlobalProtect clients and satellites can now connect to portals and gateways using IPv6. This feature allows connection from clients that are in IPv6-only environments, IPv4-only environments, or dual-stack (IPv4 and IPv6) environments. The tunnel endpoints are IPv6 capable and IPv6 user traffic can be routed through the tunnel. You can encapsulate IPv4 traffic within an IPv6 tunnel and the IP address pool can assign both IPv4 and IPv6 addresses. This feature requires you to install a GlobalProtect subscription on any portal or gateway that uses IPv6.

IPv6 uses 16-byte hexadecimal number fields separated by colons (:) to represent the 128-bit addressing format. For example, 2001:db8:130D:0000:0000:09F0:876A:130B.

To make an IPv6 address easier to represent, IPv6 uses the following conventions to shorten the address:

- Leading zeros in the address field are optional. For example, the following hexadecimal numbers can be represented as shown:
 - 0000 (expanded) can be represented as 0 (compressed)
 - 2001:db8:130D:0000:0000:09F0:876A:130B (expanded) can be represented as 2001:db8:130D::0:9F0:876A:130B (compressed)

- A pair of colons (::) represents successive fields of zeros. The pair of colons can be used only once in an IPv6 address. For example:
 - E2001:db8:130D::0:0:9F0:876A:130B (expanded) can be represented as 2001:db8:130D::9F0:876A:130B (compressed)
 - DD01:0:0:0:0:0:1 (expanded) can be represented as DD01::1 (compressed)

An address parser can easily identify the number of missing zeros in an IPv6 address by separating the two parts of the address and filling in the zeros until the 128-bit address is complete. However, if two colons (::) are placed in the same address, then there is no way to identify the size of each block of zeros. The use of colons makes many IPv6 addresses very small.

STEP 1 | Before you configure an IP address, select the type of GlobalProtect connection you want to configure.
Select the type of GlobalProtect connection you want to configure. This can include connections to the GlobalProtect portal, GlobalProtect internal gateways, GlobalProtect external gateways, authentication server IP pools, and tunnel interfaces to satellites.

STEP 2 | Navigate to **Network Settings** for the connection type.

For portal and gateway configurations, **Network Settings** are located on the **General** tab. For satellite configurations, there is a **Network Settings** tab.

1. Choose the **IP Address Type** from the drop down. The IP address type can be **IPv4** (for IPv4 traffic only), **IPv6** (for IPv6 traffic only, or **IPv4 and IPv6**. Use IPv4 and IPv6 if your network supports dual stack configurations, where IPv4 and IPv6 run at the same time.

2. Enter the **IP Address**. The IP address you enter must be compatible with the IP address type. For example, 172.16.1/0 for IPv4 addresses or 21DA:D3:0:2F3B for IPv6 addresses. For dual stack configurations, enter both an IPv4 and IPv6 address.
Split Tunnel to Exclude by Access Route

You can now exclude specific destination IP subnet traffic from being sent over the VPN tunnel. With this feature, you can send latency sensitive or high bandwidth consuming traffic outside of the VPN tunnel while all other traffic is routed through the VPN for inspection and policy enforcement by the GlobalProtect gateway.

Now, the routes you send through the VPN tunnel can be defined either as the routes you include in the tunnel, or as routes that you exclude from the tunnel, or a combination of both. For example, you can set up split tunneling to allow remote users to access the internet without going through the VPN tunnel. More specific routes take precedence over less-specific routes. If you don’t include or exclude routes, every request is routed through the tunnel (no split tunneling).

STEP 1 | Configure the GlobalProtect gateway.

- Select the gateway you want to modify, or add a new gateway.
- Enable tunneling and configure the tunnel parameters for an agent configuration.

STEP 2 | On the GlobalProtect Gateway Configuration dialog, select Agent > Client Settings to add or modify client settings for the agent.

STEP 3 | Select Client Settings > Split Tunnel to define a split tunnel configuration for the client.

With a split tunnel, you can define the traffic that flows through the VPN by including routes, excluding routes, or both. In some cases, it can be easier to specify the routes you want the client to exclude, rather than specifying all the routes you want to include. For example, if you want to tunnel everything except one or two class C networks, you can exclude these few networks rather than compiling a long list of the networks you want to include.

If you only exclude routes, all other routes are included by default. If you only include routes, all other routes are excluded by default. In the case of a conflict between included and excluded routes, the more specific route configuration will be honored.

STEP 4 | Make sure No direct access to local network is disabled. This setting disables split tunneling for networks on Windows and Mac OS.
STEP 5 | (Optional) In the **Includes** area, **Add** the destination subnets or address object (of type IP Netmask) to route only some traffic—likely traffic destined for your LAN—to GlobalProtect. These are the routes the gateway pushes to the remote users’ endpoint and thereby determines what traffic the users’ endpoint can send through the VPN connection.

STEP 6 | (Optional) In the **Excludes** area, **Add** the destination subnets or address object (of type IP Netmask) that you want the client to exclude. These routes will be sent through the endpoint’s physical adapter rather than through the virtual adapter (the tunnel). Excluded routes should be more specific than the included routes; otherwise, you may exclude more traffic than you intended.

Excluding routes is not supported on Android. Only IPv4 routes are supported on Chrome.

STEP 7 | Save the gateway configuration.

- Click **OK** twice
- **Commit** your changes.
External Gateway Priority by Source Region

GlobalProtect can now use the geographic region of the GlobalProtect client to determine the best external gateway. By including source region as part of external gateway selection logic, you can ensure that users connect to gateways that are preferred for their current region. This can help avoid distant connections when there are momentary fluctuations of network latency. This can also be used to ensure all connections stay within a region if desired.

This feature is not supported for IPv6 connections. Also, identifying the region for the connecting endpoint may not be reliable if a proxy server is used for the portal connection or if the firewall performs a source NAT on the traffic to the portal.

STEP 1 | Define a GlobalProtect Agent Configuration.

STEP 2 | On the External tab, click Add for External Gateways.

STEP 3 | Add one or more Source Regions for the gateway, or select Any to make the gateway available to all regions. When users connect, GlobalProtect recognizes the device region and only allows uses to connect to gateways that are configured for that region. GlobalProtect prioritizes the source region first, and then considers gateway priority.
STEP 4 | Set the Priority of the gateway:

If you have only one external gateway, you can leave the value set to **Highest** (default).

If you have multiple external gateways, you can modify the priority values (ranging from **Highest** to **Lowest**) to indicate a preference for the specific user group to which this configuration applies. For example, if you prefer that the user group connects to a local gateway you would set the priority higher than that of more geographically distant gateways. The priority value is then used to weight the agent’s gateway selection algorithm.

If you do not want agents to automatically establish tunnel connections with the gateway, select **Manual only**. This setting is useful in testing environments.

STEP 5 | Save the agent configuration.

- Click **OK** twice
- **Commit** your changes.
Internal Gateway Selection by Source IP Address

GlobalProtect can now restrict internal gateway connection choices based on the source IP address of the client. In a distributed enterprise, this feature allows users from a branch to authenticate and send HIP reports to the firewall configured as the internal gateway for that branch as opposed to authenticating and sending HIP reports to all branches. Previously, to prevent GlobalProtect applications from sending HIP information to a large number of gateways, you had to configure multiple portals.

With this feature, internal gateway selection is based on the following considerations:

- The source IP address of the connecting endpoint. The GlobalProtect client only authenticates to internal gateways which are configured to accept connections from selected ranges of IP addresses.
- If the connecting endpoint uses DHCP for IP addressing, the GlobalProtect client authenticates to internal gateways based on a list of gateways obtained as an option from a DHCP server.

When both the source address and DHCP options are configured, the list of available gateways presented to the client is based on the combination (union) of the two configurations.

STEP 1 | Define a GlobalProtect Agent Configuration.

STEP 2 | On the Internal tab, Add a new internal gateway configuration for the agent, or modify an existing internal gateway configuration.

STEP 3 | (Optional) Add one or more Source Addresses to the gateway configuration. The source address can be an IP subnet or range. It can also be a predefined address. When users connect, GlobalProtect recognizes the source address of the device and only allows users to connect to gateways that are configured for that address.
STEP 4 | Click OK to save your changes.

STEP 5 | *(Optional)* Add a **DHCP Option 43 Code** to the gateway configuration. You can include one or more sub-option codes associated with the vendor-specific information (Option 43) that the DHCP server has been configured to offer the client. For example, you might have a sub-option code 100 that is associated with an IP address of 192.168.3.1.

When a user connects, the GlobalProtect portal sends the list of option codes in the portal configuration to the GlobalProtect agent and the agent selects gateways indicated by the options.

When both the source address and DHCP options are configured, the list of available gateways presented to the client is based on the combination (union) of the two configurations.

> **DHCP options are supported on Windows and Mac endpoints only. DHCP options cannot be used to select gateways that use IPv6 addressing.**

STEP 6 | Save the agent configuration.

- Click OK.
- Commit your changes.
GlobalProtect Agent Login Enhancement

To simplify GlobalProtect agents and prevent unnecessary login prompts when a username and password are not required, the panel that showed portal, username, and password is now split into two screens (one screen for the portal location and another screen for username and password). The GlobalProtect agent now displays login prompts for username and password only if this information is required. GlobalProtect automatically hides the username and password screen for authentication types—such as cookie or client certificate authentication—that do not require a username and password.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The GlobalProtect agent login screen has been simplified. The username and password have been moved to a separate screen.</td>
</tr>
<tr>
<td>2</td>
<td>(New) This is the new, simplified screen for connecting to GlobalProtect and changing portals.</td>
</tr>
<tr>
<td>3</td>
<td>(New) The username and password prompts appear only if this information is required. These prompts are hidden automatically based on authentication type (for example, with cookie or certificate authentication).</td>
</tr>
</tbody>
</table>
You can now leverage the new Authentication Features within GlobalProtect to support access to non-browser-based applications that require multi-factor authentication. On Windows and Mac endpoints, GlobalProtect can now notify and prompt the user to perform the timely, multi-factor authentication needed to access sensitive network resources.

Authentication Policy and Multi-Factor Authentication for GlobalProtect

A GlobalProtect client is a requirement for multi-factor authentication on non-browser applications. For browser-based applications that require multi-factor authentication, users are automatically presented with Authentication Portal page (previously called the Captive Portal page). For non-browser applications, if a session matches an Authentication policy rule, then the firewall will send a UDP notification to the GlobalProtect client with an embedded URL link to the Authentication Portal page. GlobalProtect displays this message as a pop up notification to the user.

You can customize the message that GlobalProtect users see when prompted to authenticate. Clicking this link sends the user to the Authentication Portal page where they can start the multi-factor authentication process (the same as with browser-based HTTP applications).

STEP 1 Before you configure GlobalProtect, configure multi-factor authentication on the firewall.
To use multi-factor authentication for protecting sensitive resources, the easiest solution is to integrate the firewall with an MFA vendor that is already established in your network. When your MFA structure is ready, you can start configuring the components of your authentication policy. For more information, refer to Configure Multi-Factor Authentication.

- Enable Captive Portal to record authentication timestamps and update user mappings.
- Create server profiles that define how the firewall will connect to the services that authenticate users.
- If you are using two-factor authentication with GlobalProtect to authenticate to the gateway or portal, a RADIUS server profile is required. If you are using GlobalProtect to notify the user about an authentication policy match (UDP message), a Multi Factor Authentication server profile is sufficient.
- Assign the server profiles to an Authentication profile which specifies authentication parameters.
- Configure a Security policy rule that allows users to access the resources that require authentication.

STEP 2 | For GlobalProtect to support multi-factor authentication on external gateways, you must configure a response page on the tunnel interface. Refer to Authentication Policy and Multi-Factor Authentication for more information on how to configure an MFA Login response page.

STEP 3 | Configure GlobalProtect clients to display multi-factor authentication notifications for non-browser-based applications on Windows and Mac endpoints. In an App configuration, configure the following settings:

- **Enable Inbound Authentication Prompts from MFA Gateways** to Yes. To support multi-factor authentication (MFA), a GlobalProtect client must receive and acknowledge UDP prompts that are inbound from the gateway. Select Yes to enable a GlobalProtect client to receive and acknowledge the prompt. By default, the value is set to No meaning GlobalProtect will block UDP prompts from the gateway.
- Specify the **Network Port for Inbound Authentication Prompts (UDP)** a GlobalProtect client uses to receive inbound authentication prompts from MFA gateways. The default port is 4501. To change the port, specify a number from 1 to 65535.
- Specify the list of **Trusted MFA Gateways** a GlobalProtect client will trust for multi-factor authentication. When a GlobalProtect client receives a UDP message on the specified network port, GlobalProtect displays an authentication message only if the UDP prompt comes from a trusted gateway.
- Configure the **Inbound Authentication Message**. GlobalProtect automatically appends the URL of the Authentication Portal page you configured in the first step to the message.

STEP 4 | Save the agent configuration (click OK twice), and then Commit your changes.
SAML 2.0 Authentication for GlobalProtect

GlobalProtect portals, gateways, and clients now support SAML 2.0 Authentication. If you have chosen SAML as your authentication standard, GlobalProtect portals and gateways can act as a Security Assertion Markup Language (SAML) 2.0 service provider and GlobalProtect clients can authenticate users directly to the SAML identity provider. You can configure SAML authentication for user authentication to GlobalProtect gateways or to the GlobalProtect portal, or both.

STEP 1 | Configure SAML 2.0 Authentication on the PAN-OS firewall that hosts the portal or gateway.

- Create a server profile with settings for access to the SAML 2.0 authentication service.
- Create an authentication profile that refers to the SAML server profile.

STEP 2 | (Optional) Configure a GlobalProtect gateway.

1. Specify SAML authentication for gateway users:
 - Select Authentication Profile and add the SAML authentication profile you created in step 1. This profile is used to authenticate an endpoint seeking access to the gateway.

 - Enter an Authentication Message to help end users understand which credentials to use when logging in. The message can be up to 100 characters in length (default is Enter login credentials).

2. (Optional) Select a Certificate Profile to use for client authentication to the gateway. For the certificate profile you select, make sure the Username Field in the certificate profile is set to None.

STEP 3 | (Optional) Define the GlobalProtect Client Authentication Configurations on the GlobalProtect portal.

1. Specify SAML authentication for the client:
 - Select Authentication Profile and add a SAML authentication profile. You can use the same profile you created in step 1 or create a new SAML profile for the portal. This profile is used to authenticate an endpoint seeking access to the portal.

 - Enter an Authentication Message to help end users understand which credentials to use when logging in. The message can be up to 100 characters in length (default is Enter login credentials).

2. (Optional) Select a Certificate Profile to use for client authentication to the portal. For the certificate profile you select, make sure the Username Field in the certificate profile is set to None.
Restrict Transparent Agent Upgrades to Internal Network Connections

As part of a GlobalProtect portal configuration, you can now control when transparent upgrades occur for a GlobalProtect client. With this configuration, if the user connects from outside the corporate network, the upgrade is postponed. Later, when the user connects from within the corporate network, the upgrade is activated. This feature allows you to hold the updates until users can take advantage of good network availability and high bandwidth from within the corporate network. The upgrades will not hinder users when they travel to environments with low bandwidth.

STEP 1 | Customize the GlobalProtect Agent.

1. Select Network > GlobalProtect > Portals and select the portal configuration for which you want to add an agent configuration (or Add a new configuration).
2. Select the Agent tab and select the configuration you want to modify (or Add a new configuration).
3. Select the App tab.

By default, the App configurations display the options with default values that you can customize for each client configuration. By default, GlobalProtect prompts the end user to upgrade.

STEP 2 | Change the default behavior so that GlobalProtect app upgrades occur automatically.

Set Allow User to Upgrade GlobalProtect App to one of the following:

- **Allow Transparently**—Upgrades occur automatically without interaction with the user. Upgrades can occur when the user is working remotely or connected from within the corporate network.
- **Internal**—Upgrades occur automatically without interaction with the user, provided the user is connected from within the corporate network. This setting is recommended to prevent slow upgrades in low-bandwidth situations. When a user connects outside the corporate network, the upgrade is postponed and re-activated later when the user connects from within the corporate network. You must configure internal gateways and internal host detection to use this option.

Upgrades for Allow Transparently and Internal occur only if the GlobalProtect software version on the portal is more recent than the GlobalProtect software version on the endpoint. For example, a GlobalProtect 3.1.3 agent connecting to a GlobalProtect 3.1.1 portal is not upgraded.
STEP 3 | Save the agent configuration settings.

1. If you are done creating agent configurations, click OK to close the Configs dialog.
2. If you are done configuring the portal, click OK to close the GlobalProtect Portal Configuration dialog.
3. **Commit** your changes.
AirWatch MDM Integration

The Windows-based User-ID agent has been extended to support a new AirWatch MDM integration service. This service enables GlobalProtect to use the host information collected by the service to enforce HIP-based policies on devices managed by AirWatch. Running as part of the Windows-based User-ID agent, the AirWatch MDM integration service uses the AirWatch API to collect information from mobile devices that are managed by VMware AirWatch and translate this data into host information.

For Android devices managed by AirWatch, this feature supports Android for Work devices, but it does not support other types of Android devices.

MDM integration service included with the Windows-based User-ID agent does a full HIP query to the AirWatch MDM server to get the complete host information for a device. When a mobile device running the GlobalProtect app is connected to a GlobalProtect gateway, GlobalProtect can apply security policies with host information profiles.

You configure the MDM integration service to fetch AirWatch device information at regular intervals and push this information to GlobalProtect gateways. In addition, the service can monitor AirWatch event notifications and fetch updated device information when AirWatch events occur (for example, device enrollment, device wipe, and compliance changes).
Enhanced Always-On VPN for Android

Software support: GlobalProtect agent 4.0.3 and later releases and PAN-OS with content release 731 or a later release

OS support: Android 7.0 and later releases

GlobalProtect with Always-On VPN now provides increased security for Android endpoints and includes the following enhancements:

- **Automatically connect at boot time**—With Always-On VPN, GlobalProtect now connects at boot time instead of waiting for the user to unlock the endpoint. On average, this process takes fewer than 60 seconds and enables GlobalProtect to apply security policies sooner thus ensuring accurate security protection. On older Android releases, GlobalProtect connects after the user unlocks the device.

- **Lockdown mode**—You can now configure GlobalProtect Always-On VPN to operate in either lockdown or non-lockdown mode (the default). With lockdown mode, network traffic is permitted only after GlobalProtect establishes a connection. This behavior persists even if GlobalProtect is disabled. With non-lockdown mode, users can access the network when GlobalProtect is disabled or disconnected. In deployments which use profiles to separate work apps from personal apps, lockdown mode will block traffic to and from work apps unless GlobalProtect establishes a connection. Personal apps are not affected by this mode. Lockdown mode is supported for external gateway configurations and is not supported with internal gateways or captive portals.

Configure Always-On VPN for Android:

STEP 1 | Before you begin, set up your GlobalProtect gateways and portal.

STEP 2 | Define the GlobalProtect Agent Configurations for Android endpoints:

1. To deliver this configuration to Android endpoints only, select Android as the applicable OS in the agent configuration.
2. Customize the behavior of the GlobalProtect agent.
3. Set Connect Method to either of the two Always On options (either user-logon or pre-logon). Note that if you use an on-demand connect method, this method will override any Always On settings you configure from your third-party mobile endpoint management system.

STEP 3 | Configure an Android for Work profile from AirWatch:

1. From AirWatch, select Devices > Profiles & Resources > Profiles > Add > Add Profile > Android.
2. Select Android for Work to deploy your profile to a device enabled for Android for Work.
3. Configure the general settings for your profile and assign the smart groups to which the profile applies.
4. Configure the additional Android for Work settings such as Restrictions or Passcode.
5. Save & Publish your changes.

STEP 4 | Copy the base configuration to use as a template for your GlobalProtect VPN configuration.

1. Select Devices > Profiles & Resources > Profiles.
2. Select the radio button for your Android for Work profile and then select the </> XML button at the top of the profiles table.
3. Locate and copy the characteristic section of the configuration. The section contains a configuration type identifying its purpose, for example, restrictions.
4. Close the dialog to exit the XML view.

STEP 5 | Add the GlobalProtect VPN configuration to your Android for Work profile.

1. Select the name of your Android for Work profile.
2. Select Custom Settings > Add Version > Configure.
3. Paste your base configuration and remove any parameters that applied to your base configuration.
4. Add the following parameters after the opening characteristic declaration for your VPN configuration:

```xml
<characteristic uuid="1234567-1703-45bd-9807-************" type="com.airwatch.android.androidwork.app:com.panw.globalprotect">
  <parm name="profile_name" value="Android VPN Configuration" type="string" />
  <parm name="action" value="0" type="string" />
  <parm name="url" value="192.168.1.100" type="string" />
  <parm name="route_type" value="1" type="string" />
  <parm name="authentication_type" value="2" type="string" />
  <parm name="EnableAlwaysOnVPN" value="True" type="boolean" />
  <parm name="LockDown" value="True" type="boolean" />
</characteristic>
```

where:
- **type**—Type of VPN profile, in this case GlobalProtect.
- **profile_name**—A descriptive name to identify the profile. For example, Android VPN Configuration.
- **url**—FQDN or IP address of the GlobalProtect portal. For example, myportal.mydomain.com
- **authentication_type**—Specify value="1" to use certificate authentication. Specify value="2" to use password authentication. Specify value="3" to use both password and certificate authentication.
- **EnableAlwaysOnVPN**—Specify True to enable Always On VPN or False to disable Always On VPN and let the user manually initiate the connection.
- **LockDown**—Specify true to enable lock-down mode with Always On VPN. This option allows network traffic only after GlobalProtect establishes a connection. Set this option to false to disable lock-down mode so that GlobalProtect is not required to connect to send network traffic.

5. **Save & Publish** your changes.

STEP 6 | To verify the Android device received the updated profile and GlobalProtect successfully connects, open the VPN settings on the endpoint and view the connection status. You should see an Always-on active connection.
GlobalProtect
Connected, Always-on active
Resilient VPN Connection

Software support: GlobalProtect agent 4.0.3 and later releases and PAN-OS with content release 731 or a later release

OS support: Android, iOS, Windows, Mac

To improve the resiliency of the GlobalProtect connection, GlobalProtect agents can now automatically try to resurrect the tunnel when the connection is lost due to network instability or endpoint state changes. Examples of scenarios where the endpoint can disconnect from the network include locking and unlocking an endpoint, putting an endpoint to sleep and waking it back up, switching between wireless networks, and switching from a wired network to a wireless network. By enabling GlobalProtect to resurrect the tunnel in these common scenarios, you can reduce the effort required by the user to maintain the connection thus ensuring consistent enforcement of security policies.

With resilient VPN, the GlobalProtect agent can resurrect the tunnel to previously-connected manual or auto-discovery gateways. If the GlobalProtect agent successfully resurrects the tunnel, the user is not required to authenticate again. If the GlobalProtect agent cannot resurrect the tunnel, the GlobalProtect agent disconnects the tunnel and reverts to the behavior of the connect method you define in your GlobalProtect portal agent configuration:

- **On-demand**—If the GlobalProtect agent cannot resurrect the tunnel, the agent does not try to connect again until the user initiates the connection. The GlobalProtect portal and gateway will then require the user to authenticate.
- **User-logon (Always On) or Pre-logon (Always On)**—If the GlobalProtect agent cannot resurrect the tunnel, the agent starts the network discovery process. When the network is reachable, the agent connects to the best available gateway. The GlobalProtect portal and gateway will then require the user to authenticate.

To customize resilient VPN for your end users, you can configure two new options in your GlobalProtect portal agent configuration:
- **Automatic Restoration of VPN Connection Timeout** — Enables or disables the resilient VPN behavior. A value of 0 disables the resilient VPN feature meaning the GlobalProtect agent does not attempt to resurrect the tunnel. When you specify a value other than 0, the GlobalProtect agent attempts to resurrect the tunnel with the last-connected manual or automatic gateway within the specified timeout period. For example, with a timeout value of 30 minutes, the agent does not attempt to resurrect the tunnel if the tunnel is disconnected for 45 minutes. However, if the tunnel is disconnected for 15 minutes, the agent attempts to resurrect the tunnel because the number of minutes has not exceeded the timeout value.

 GlobalProtect will not resurrect the tunnel if any of the following conditions occur:

 - GlobalProtect did not previously establish a tunnel to a gateway (for example when a user first logs in and has not yet connected to a gateway)
 - The user manually disconnected
 - The timeout to disconnect on idle expired
 - The timeout to switch the tunnel from a pre-logon user to a logged-in user expired
 - The endpoint rebooted
 - The user logged off of the endpoint
 - The tunnel is down for a period of time which exceeds the timeout value

 With always-on VPN, if a user switches from an external network to an internal network before the timeout value expires, GlobalProtect does not perform network discovery. As a result, GlobalProtect restores the connection to the last known external gateway. To trigger an immediate internal host detection, the user must select Rediscover Network from the GlobalProtect console.

- **Wait Time Between VPN Connection Restore Attempts** — Specifies the time between resilient VPN connection attempts to restore the connection to the gateway. By default, the wait time between the resilient VPN connection attempts is five seconds. If necessary, you can specify a longer or shorter wait time depending on your network conditions.

Configure GlobalProtect to automatically reconnect:

STEP 1 | Configure the GlobalProtect portal.

Select **Network > GlobalProtect > Portals** and select the portal configuration for which you want to add a client configuration or Add a new one.

STEP 2 | Add or modify an agent configuration.

1. From the **Agent** tab, select the agent configuration you want to modify or Add a new one.
2. Select the **App** tab.
STEP 3 | Define the action GlobalProtect takes when the tunnel is disconnected.

In the App Configurations area, set the Automatic Restoration of VPN Connection Timeout. The range is 0-180 minutes; the default is 30.

To disable this feature so that GlobalProtect does not attempt to resurrect the tunnel after the tunnel is disconnected, set the timeout value to 0.

STEP 4 | (Optional) Configure the time between attempts to restore the connection to the gateway.

In the App Configurations area, configure the Wait Time Between VPN Connection Restore Attempts in seconds. The range is 1-60 seconds; the default is 5.

STEP 5 | Save your configuration changes.

1. Click OK twice.
2. Commit your changes.
Gateway Selection Enhancement

Software support: GlobalProtect agent 4.0.3 and later releases with PAN-OS 6.1 and later releases

OS support: All

To improve the logic the GlobalProtect agent uses to select the best gateway, the GlobalProtect agent now prioritizes the gateways assigned highest, high, and medium priority ahead of gateways assigned a low or lowest priority regardless of response time. The GlobalProtect agent then appends any gateways assigned a low or lowest priority to the list of gateways. This ensures that the agent first attempts to connect to the gateways that you configure with a higher priority. This is useful in redundant data center deployments to ensure that agents to prioritize connections to gateways in the primary data center (with higher priority) over connections to gateways in the backup data center (with lower priority).

For example, consider a deployment with two data centers: one with three gateways and a secondary backup data center with two gateways prioritized as shown in the following GlobalProtect portal agent configuration:

Now consider you have users who primarily access resources through the gateways in the primary data center. When a user roams to a location closer (in response time) to the secondary data center, the agent now first tries the primary gateways for which you’ve set a medium to high priority.
As a result, the GlobalProtect agent automatically tries a gateway in the primary data center first before trying any of the gateways in the secondary data center. By adjusting the priority level in the GlobalProtect portal agent configuration, you can ensure that your end users access the gateways prioritized for that configuration.
DNS Query Enhancement

Software support: GlobalProtect agent 4.0.3 and later releases and PAN-OS with content release 731 or a later release

OS support: Windows only

The DNS resolution logic is now enhanced on Windows endpoints to provide better DNS performance. When the GlobalProtect VPN is connected, Windows endpoints send DNS queries to the DNS servers configured on the GlobalProtect gateway. In some cases where the DNS servers configured on the GlobalProtect gateway cannot resolve the DNS query, Windows sends the query to the DNS servers set on the physical adapter. This can result in long wait times to resolve DNS queries. This feature addresses this behavior by preventing Windows from sending DNS queries to the physical adapter when the tunnel is connected thus yielding better DNS performance.

With this feature, you can now configure the new Resolve All FQDN Using DNS Servers Assigned by Tunnel option in your GlobalProtect portal agent configuration. This option is enabled by default and specifies how the Windows endpoint will resolve DNS queries when the tunnel is connected:

- When this feature is enabled (set to Yes) and the tunnel is connected, GlobalProtect allows Windows endpoints to send all DNS queries through the tunnel to the DNS servers you configure on the gateway.
- When this option is disabled (set to No) and the tunnel is connected, GlobalProtect allows Windows endpoints to send DNS queries to the DNS servers on the physical adapter if the gateway-provided DNS server cannot resolve a DNS query or cannot be reached. Note that disabling this option can result in long wait times to resolve some DNS queries.

This feature does not support DNS over TCP.

To configure DNS resolution settings:

STEP 1 | Configure the GlobalProtect portal.

Select **Network** > **GlobalProtect** > **Portals** and select the portal configuration for which you want to add a client configuration or **Add** a new one.

STEP 2 | Add or modify an agent configuration.

1. From the **Agent** tab, select the agent configuration you want to modify or **Add** a new one.
2. Select the **App** tab.
STEP 3 | Define the DNS resolution preferences when the VPN tunnel is connected on Windows endpoints with GlobalProtect agents 4.0.3 and later.

Set **Resolve All FQDNs Using DNS Servers Assigned by the Tunnel** to **Yes** (default) to enable the GlobalProtect agent to allow the Windows endpoint to resolve all DNS queries with the DNS servers you configure on the gateway instead of allowing Windows to send some DNS queries to the DNS servers set for the physical adapter on the endpoint.

To retain the native Windows behavior to send DNS queries to the DNS server on the physical adapter if the initial query to the DNS server configured on the gateway is not resolved, set this option to **No**.

STEP 4 | Save your configuration changes.

1. Click **OK** twice.
2. Commit your changes.
PAN-OS XML API Features

- Admin-Level Commit and Revert using API
- SAML 2.0 Authentication using API
- CloudWatch Integration for VM-Series Firewalls on AWS using API
- Listing of Deactivation License Token Using API
Admin-Level Commit and Revert using API

The PAN-OS XML API now supports Admin-Level Commit and Revert for firewall or Panorama configuration changes. Use the API within your script, application, or service to automate firewall and Panorama configuration changes without affecting pending changes by other administrators.

- **Commit admin-level changes on a firewall or Panorama while excluding shared objects**—Include the administrator name in the request.

  ```
  https://firewall/api/?
  key=apikey&type=commit&action=partial&cmd=<commit><partial><device-and-network>excluded</device-and-network><shared-object>excluded</shared-object><admin><member>admin-name</member></admin></partial>
  ```

- **Revert admin-level changes on a firewall**—Include the administrator name in the request.

  ```
  https://firewall/api/?
  key=apikey&type=op&cmd=<revert><config><partial><admin><member>admin-name</member></admin></partial></config></revert>
  ```

- **Revert admin-level changes to Panorama by a specific administrator within a specific device group**—Include the administrator name and the device group where Panorama will revert changes.

  ```
  https://panorama/api/?
  key=apikey&type=op&cmd=<revert><config><partial><admin><member>admin-name</member></admin><device-group><member>device-group-name</member></device-group><no-template/><no-template-stack/><no-log-collector-group/><no-log-collector/><device-and-network>excluded</device-and-network></partial></config></revert>
  ```
SAML 2.0 Authentication using API

You can now automate the configuration of SAML 2.0 Authentication single sign-on (SSO) and single logout (SLO) using the PAN-OS XML API. Programmatically create necessary SAML 2.0 authentication profiles using the API in your application, script, or enterprise portal.

- **(Recommended) Import a metadata file from the IdP**— The metadata file contains registration information and the certificate that the IdP uses to sign SAML messages. If you import a metadata file, you do not need to independently Create a SAML Identity Provider (IdP) server profile. Include the metadata filepath and SAML server profile name in your GET request:
 - **key**: API key
 - **file**: filepath to SAML metadata file. The metadata file contains registration information, as well as the certificate that the IdP uses to sign SAML messages. Export the metadata file from the IdP to a client system that the firewall can access. The certificate specified in the file must meet the certain SAML 2.0 Authentication requirements. Refer to your IdP documentation for instructions.
 - **profile-name**: passphrase, up to 31 characters

```bash
curl -F file=@filename.txt -g 'https://firewall/api/?key=apikey&type=import&category=idp-metadata&profile-name=profilename'
```

- **Create a SAML Identity Provider (IdP) server profile**

 Include IdP configuration parameters in your GET request:
 - **key**: API key
 - **vsys**: location, example values: shared, vsys1, vsys2
 - **name**: server profile name
 - **entity-id**: identity provider id
 - **certificate**: (Best Practice) identity provider certificate
 - **sso-url**: identity provider SSO URL
 - **slo-url**: identity provider SLO URL
 - **sso-binding**: SSO SAML HTTP binding, acceptable values: post, redirect
 - **ssl-binding**: SSL SAML HTTP binding, acceptable values: post, redirect
 - **max-clock-skew**: difference in system time as measured in seconds between firewall and IdP. The default value is 60 with a range of 1-900.
 - **validate-idp-certificate**: (Best Practice) specify whether you want to validate the IdP certificate. The default value is yes.
 - **want-auth-requests-signed**: specify whether the IdP expects a digital signature on authentication requests. The default value is no.

```xml
```
• Create a SAML authentication profile using the PAN-OS XML API—Include SAML authentication profile parameters in your GET request:

 • **key**: API key
 • **authentication-profile**: authentication profile name
 • **enable-single-login**: specify whether you want to enable SAML single logout. The default value is no.
 • **request-signing-certificate**: request signing certificate name
 • **server-profile**: SAML Identity Provider (IdP) server profile name
 • **certificate-profile**: certificate profile name
 • **attribute-name-username**: SAML username attribute
 • **attribute-name-usergroup**: SAML user group attribute
 • **attribute-name-access-domain**: SAML admin domain attribute
 • **attribute-name-admin-role**: SAML admin role attribute

  ```
  https://firewall/api/?key=apikey&type=config&action=set&xpath=/config/shared/authentication-profile/entry[@name='authentication-profile-name']/method/saml-idp&element=<enable-single-login>no</enable-single-login><request-signing-certificate><server-profile>server-profile-name</server-profile><certificate-profile>profile-name</certificate-profile><attribute-name-username>username</attribute-name-username><attribute-name-usergroup>usergroup</attribute-name-usergroup><attribute-name-access-domain>access-domain</attribute-name-access-domain><attribute-name-access-domain>access-domain</attribute-name-access-domain><attribute-name-admin-role>admin-role</attribute-name-admin-role>
  ```

• Add users and user groups that are allowed to authenticate with this authentication profile—Include profile name and member list in your request:

 • **key**: API key
 • **authentication-profile**: authentication profile name
 • **member**: users or user groups. To include specific users or groups, include in brackets: [member1, member 3]. To include all users, include all.

  ```
  https://firewall/api/?key=apikey&type=config&action=set&xpath=/config/shared/authentication-profile/entry[@name='authentication-profile-name']/allow-list&element=<member>all</member>
  ```

• Assign the authentication profile to firewall services that require authentication—For example, to assign the authentication profile to a superuser administrator account for web access, include these parameters in your GET request:

 • **key**: API key
 • **name**: admin username
 • **authentication-profile**: name of the SAML authentication profile

  ```
  https://firewall/api/?key=apikey&type=config&action=set&xpath=/config/mgt-config/users/entry[@name='adminname']&element=<permissions><role-based><superuser>yes</superuser></role-based></permissions><authentication-profile>authprofilename</authentication-profile>
  ```
CloudWatch Integration for VM-Series Firewalls on AWS using API

The PAN-OS XML API now supports CloudWatch Integration for VM-Series Firewalls on AWS.

- **Enable CloudWatch Integration for VM-Series Firewalls in AWS using API**—Include the AWS CloudWatch namespace and optionally the update interval in minutes (the default is 5) in your request:

 https://firewall/api/?key=apikey&type=config&action=set&xpath=/config/devices/entry[@name='localhost.localdomain']/deviceconfig/setting/aws-cloudwatch/&element=<enabled>yes</enabled><name>aws-cloudwatch-namespace</name><timeout>update-interval</timeout>

- **Disable CloudWatch Integration for VM-Series Firewalls in AWS using API**—Include the AWS CloudWatch namespace in your request and set the `<enabled>` parameter to no:

 https://firewall/api/?key=apikey&type=config&action=set&xpath=/config/devices/entry[@name='localhost.localdomain']/deviceconfig/setting/aws-cloudwatch/&element=<enabled>no</enabled><name>aws-cloudwatch-namespace</name>
Listing of Deactivation License Token Using API

When you manually deactivate a VM or a feature license or subscription on the firewall, you can now use the PAN-OS XML API to list and view token files.

- **List License Tokens on the Firewall**

 Parameters: firewall, key

 To view a list of license token files on a firewall using the PAN-OS XML API, issue an operational request and include the firewall IP address or domain name along with the API key. Learn how to get started with the PAN-OSXML API.

 Request:

  ```
  https://firewall/api/?key=apikey&type=op&cmd=<show><license-token-files/></show>
  ```

 Sample API request for listing license tokens using Curl:

  ```
  curl -k -g "https://1.2.3.4/api/?key=1364846455464546846?type=op&cmd=<show><license-token-files/></show>"
  ```

 Sample API response:

  ```
  <response status="success">
  <result>
  <files>
  <entry name="dact_lic.12022016.060130.tok"/>
  <entry name="dact_lic.12282016.070001.tok"/>
  </files>
  </result>
  </response>
  ```

- **View the Contents of a License Token on the Firewall**

 Parameters: firewall, key, name

 To view an individual token file on a firewall using the PAN-OS XML API, issue an operational request and include the firewall IP address or domain name, API key, and the name of the specific token file.

 Request:

  ```
  https://firewall/api/?key=apikey&type=op&cmd=<show><license-token-files><name>token_file.tok</name></license-token-files></show>
  ```

 Sample API request for showing a license token using Curl:

  ```
  curl -k -g "https://1.2.3.4/api/?key=1364846455464546846?type=op&cmd=<show><license-token-files><name>dact_lic.12022016.060130.tok</name></license-token-files></show></operations></request>
  ```
Sample API response:

```
<response status="success">
  <result>lFDkWuqqjoNLJPjTaqlr6Tvoe_AtvoMSBpxgUzPQJ7ZC7I7hz/
            QLkKLQIuGBa7U-pM027_yfjwvjv11ogX1qrXVag/
            nCUsuYWTf5zqL55riulfgz9GNkN6eirKFBYYQ~K1B2MENulkCzxgZCUk7Gt/tYjC...
            <!--TRUNCATED-->
  </result>
</response>
```