End-of-Life (EoL)

Layer 3 Subinterface

  • Network > Interfaces > Ethernet
For each Ethernet port configured as a physical Layer 3 interface, you can define additional logical Layer 3 interfaces (subinterfaces).
To configure a PA-7000 Series Layer 3 Interface, select a physical interface,
Add Subinterface
, and specify the following information.
Layer 3 Subinterface Settings
Configured In
Interface Name
Layer3 Subinterface
The read-only
Interface Name
field displays the name of the physical interface you selected. In the adjacent field, enter a numeric suffix (1 to 9,999) to identify the subinterface.
Enter an optional description for the subinterface.
Enter the VLAN tag (1 to 4,094) for the subinterface.
Netflow Profile
If you want to export unidirectional IP traffic that traverses an ingress subinterface to a NetFlow server, select the server profile or click
Netflow Profile
to define a new profile (see Device > Server Profiles > NetFlow). Select
to remove the current NetFlow server assignment from the subinterface.
Virtual Router
Layer3 Subinterface
Assign a virtual router to the interface, or click
Virtual Router
to define a new one (see Network > Virtual Routers). Select
to remove the current virtual router assignment from the interface.
Virtual System
If the firewall supports multiple virtual systems and that capability is enabled, select a virtual system (vsys) for the subinterface or click
Virtual System
to define a new vsys.
Security Zone
Select a security zone for the subinterface, or click
to define a new zone. Select
to remove the current zone assignment from the subinterface.
Management Profile
Layer3 Subinterface
Other Info
Management Profile
—Select a profile that defines the protocols (for example, SSH, Telnet, and HTTP) you can use to manage the firewall over this interface. Select
to remove the current profile assignment from the interface.
Enter the maximum transmission unit (MTU) in bytes for packets sent on this interface (range is 576 to 9,192; default is 1,500). If machines on either side of the firewall perform Path MTU Discovery (PMTUD) and the interface receives a packet exceeding the MTU, the firewall returns an ICMP fragmentation needed message to the source indicating the packet is too large.
Adjust TCP MSS
Select to adjust the maximum segment size (MSS) to accommodate bytes for any headers within the interface MTU byte size. The MTU byte size minus the MSS Adjustment Size equals the MSS byte size, which varies by IP protocol:
  • IPv4 MSS Adjustment Size
    —Range is 40 to 300; default is 40.
  • IPv6 MSS Adjustment Size
    —Range is 60 to 300; default is 60.
Use these settings to address the case where a
through the network requires a smaller MSS. If a packet has more bytes than the MSS without fragmentation, this setting enables the adjustment.
Encapsulation adds length to headers so it helps to configure the MSS adjustment size to allow bytes for such things as an MPLS header or tunneled traffic that has a VLAN tag.
IP Address
MAC Address
Layer3 Subinterface
ARP Entries
To add one or more static Address Resolution Protocol (ARP) entries,
an IP address and its associated hardware [media access control (MAC)] address. To delete an entry, select the entry and click
. Static ARP entries reduce ARP processing.
IPv6 Address
MAC Address
Layer3 Subinterface
ND Entries
To provide neighbor information for Neighbor Discovery Protocol (NDP),
the IP address and MAC address of the neighbor.
Enable NDP Proxy
Layer3 Subinterface
NDP Proxy
Enable Neighbor Discovery Protocol (NDP) proxy for the interface. The firewall will respond to ND packets requesting MAC addresses for IPv6 addresses in this list. In the ND response, the firewall sends its own MAC address for the interface so that the firewall will receive the packets meant for the addresses in the list.
It is recommended that you enable NDP proxy if you are using Network Prefix Translation IPv6 (NPTv6).
If you selected
Enable NDP Proxy
, you can filter numerous
entries by entering a filter and clicking Apply Filter (gray arrow).
one or more IPv6 addresses, IP ranges, IPv6 subnets, or address objects for which the firewall will act as NDP proxy. Ideally, one of these addresses is the same address as that of the source translation in NPTv6. The order of addresses does not matter.
If the address is a subnetwork, the firewall will send an ND response for all addresses in the subnet, so we recommend you also add the IPv6 neighbors of the firewall and then click
to instruct the firewall not to respond to these IP addresses.
an address to prevent NDP proxy for that address. You can negate a subset of the specified IP address range or IP subnet.
Layer3 Subinterface
to make the DDNS fields available to configure.
Enable DDNS on the interface. You must initially enable DDNS to configure it. (If your DDNS configuration is unfinished, you can save it without enabling it so that you don’t lose your partial configuration.)
Update Interval (days)
Enter the interval (in days) between updates that the firewall sends to the DDNS server to update IP addresses mapped to FQDNs (range is 1 to 30; default is 1).
The firewall also updates DDNS upon receiving a new IP address for the interface from the DHCP server.
Certificate Profile
Create a Certificate Profile to verify the DDNS service. The DDNS service presents the firewall with a certificate signed by the certificate authority (CA).
Enter a hostname for the interface, which is registered with the DDNS Server (for example, host123.domain123.com, or host123). The firewall does not validate the hostname except to confirm that the syntax uses valid characters allowed by DNS for a domain name.
Select the DDNS vendor (and version) that provides DDNS service to this interface:
  • DuckDNS v1
  • DynDNS v1
  • FreeDNS Afraid.org Dynamic API v1
  • FreeDNS Afraid.org v1
  • No-IP v1
If you select an older version of a DDNS service that the firewall indicates will be phased out by a certain date, move to the newer version.
fields that follow the vendor name are vendor-specific. The read-only fields notify you of parameters that the firewall uses to connect to the DDNS service. Configure the other fields, such as a password that the DDNS service provides to you and a timeout that the firewall uses if it doesn’t receive a response from the DDNS server.
IPv4 tab - IP
Add the IPv4 addresses configured on the interface and then select them. You can select only as many IPv4 addresses as the DDNS provider allows. All selected IP addresses are registered with the DDNS provider (Vendor).
IPv6 tab - IPv6
Add the IPv6 addresses configured on the interface and then select them. You can select only as many IPv6 addresses as the DDNS provider allows. All selected IP addresses are registered with the DDNS provider (Vendor).
Show Runtime Info
Displays the DDNS registration: DDNS provider, resolved FQDN, and the mapped IP address(es) with an asterisk (*) indicating the primary IP address. Each DDNS provider has its own return codes to indicate the status of the hostname update, and a return date, for troubleshooting purposes.
Layer3 Subinterface
Select the method for assigning an IPv4 address type to the subinterface:
  • Static
    —You must manually specify the IP address.
  • DHCP Client
    —Enables the subinterface to act as a Dynamic Host Configuration Protocol (DHCP) client and receive a dynamically assigned IP address.
Firewalls that are in a high availability (HA) active/active configuration don’t support DHCP Client.
Based on your IP address method selection, the options displayed in the tab will vary.
Layer3 Subinterface
IPv4, Type = Static
and perform one of the following steps to specify a static IP address and network mask for the interface.
  • Type the entry in Classless Inter-Domain Routing (CIDR) notation: ip_address
    mask (for example,
  • Select an existing address object of type
    IP netmask
  • Create an
    object of type
    IP netmask
You can enter multiple IP addresses for the interface. The forwarding information base (FIB) your system uses determines the maximum number of IP addresses.
an IP address when you no longer need it.
Layer3 Subinterface
IPv4, Type = DHCP
Select to activate the DHCP client on the interface.
Automatically create default route pointing to default gateway provided by server
Select to automatically create a default route that points to the default gateway that the DHCP server provides.
Send Hostname
Select to have the firewall (as a DHCP client) send the hostname of the interface (Option 12) to the DHCP server. If you Send Hostname, by default, then the hostname of the firewall is the choice in the hostname field by default. You can send that name or enter a custom hostname (64 characters maximum including uppercase and lowercase letters, numbers, periods, hyphens, and underscores.
Default Route Metric
) For the route between the firewall and DHCP server, you can enter a route metric (priority level) to associate with the default route and to use for path selection (range is 1 to 65535; there is no default). The priority level increases as the numeric value decreases.
Show DHCP Client Runtime Info
Show DHCP Client Runtime Info
to display all settings received from the DHCP server, including DHCP lease status, dynamic IP address assignment, subnet mask, gateway, and server settings (DNS, NTP, domain, WINS, NIS, POP3, and SMTP).
Enable IPv6 on the interface
Layer3 Subinterface
Select to enable IPv6 addressing on this interface.
Interface ID
Enter the 64-bit extended unique identifier (EUI-64) in hexadecimal format (for example, 00:26:08:FF:FE:DE:4E:29). If you leave this field blank, the firewall uses the EUI-64 generated from the MAC address of the physical interface. If you enable the
Use interface ID as host portion
option when adding an address, the firewall uses the interface ID as the host portion of that address.
and configure the following parameters for each IPv6 address:
  • Address
    —Enter an IPv6 address and prefix length (for example, 2001:400:f00::1/64). You can also select an existing IPv6 address object or click
    to create an address object.
  • Enable address on interface
    —Select to enable the IPv6 address on the interface.
  • Use interface ID as host portion
    —Select to use the
    Interface ID
    as the host portion of the IPv6 address.
  • Anycast
    —Select to include routing through the nearest node.
  • Send Router Advertisement
    —Select to enable router advertisement (RA) for this IP address. (You must also enable the global
    Enable Router Advertisement
    option on the interface.) For details on RA, see Enable Router Advertisement in this table.
    The remaining fields apply only if you enable RA.
    • Valid Lifetime
      —The length of time, in seconds, that the firewall considers the address as valid. The valid lifetime must equal or exceed the
      Preferred Lifetime
      . The default is 2,592,000.
    • Preferred Lifetime
      —The length of time, in seconds, that the valid address is preferred, which means the firewall can use it to send and receive traffic. After the preferred lifetime expires, the firewall cannot use the address to establish new connections but any existing connections are valid until the
      Valid Lifetime
      expires. The default is 604,800.
    • On-link
      —Select if systems that have addresses within the prefix are reachable without a router.
    • Autonomous
      —Select if systems can independently create an IP address by combining the advertised prefix with an interface ID.
Enable Duplication Address Detection
Layer3 Subinterface
Address Resolution
Select to enable duplicate address detection (DAD), then configure the other fields in this section.
DAD Attempts
Specify the number of DAD attempts within the neighbor solicitation interval (
NS Interval
) before the attempt to identify neighbors fails (range is 1 to 10; default is 1).
Reachable Time
Specify the length of time, in seconds, that a neighbor remains reachable after a successful query and response (range is 1 to 36,000; default is 30).
NS Interval (neighbor solicitation interval)
Specify the number of seconds for DAD attempts before failure is indicated (range is 1 to 10; default is 1).
Enable NDP Monitoring
Select to enable Neighbor Discovery Protocol (NDP) monitoring. When enabled, you can select NDP ( in Features column) to view information about a neighbor the firewall discovered, such as the IPv6 address, the corresponding MAC address, and the User-ID (on a best-case basis).
Enable Router Advertisement
Layer3 Subinterface
Router Advertisement
To provide Neighbor Discovery on IPv6 interfaces, select and configure the other fields in this section. IPv6 DNS clients that receive the router advertisement (RA) messages use this information.
RA enables the firewall to act as a default gateway for IPv6 hosts that are not statically configured and to provide the host with an IPv6 prefix for address configuration. You can use a separate DHCPv6 server in conjunction with this feature to provide DNS and other settings to clients.
This is a global setting for the interface. If you want to set RA options for individual IP addresses,
and configure an Address in the IP address table. If you set RA options for any IP address, you must
Enable Router Advertisement
for the interface.
Min Interval (sec)
Specify the minimum interval, in seconds, between RAs that the firewall will send (range is 3 to 1,350; default is 200). The firewall will send RAs at random intervals between the minimum and maximum values you configure.
Max Interval (sec)
Specify the maximum interval, in seconds, between RAs that the firewall will send (range is 4 to 1,800; default is 600). The firewall will send RAs at random intervals between the minimum and maximum values you configure.
Hop Limit
Specify the hop limit to apply to clients for outgoing packets (range is 1 to 255; default is 64). Enter 0 for no hop limit.
Link MTU
Specify the link maximum transmission unit (MTU) to apply to clients. Select
for no link MTU (range is 1,280 to 9,192; default is unspecified).
Reachable Time (ms)
Specify the reachable time (in milliseconds) that the client will use to assume a neighbor is reachable after receiving a reachability confirmation message. Select
for no reachable time value (range is 0 to 3,600,000; default is unspecified).
Retrans Time (ms)
Specify the retransmission timer that determines how long the client will wait (in milliseconds) before retransmitting neighbor solicitation messages. Select
for no retransmission time (range is 0 to 4,294,967,295; default is unspecified).
Router Lifetime (sec)
Specify how long, in seconds, the client will use the firewall as the default gateway (range is 0 to 9,000; default is 1,800). Zero specifies that the firewall is not the default gateway. When the lifetime expires, the client removes the firewall entry from its Default Router List and uses another router as the default gateway.
Router Preference
If the network segment has multiple IPv6 routers, the client uses this field to select a preferred router. Select whether the RA advertises the firewall router as having a
(default), or
priority relative to other routers on the segment.
Managed Configuration
Select to indicate to the client that addresses are available via DHCPv6.
Other Configuration
Select to indicate to the client that other address information (for example, DNS-related settings) is available via DHCPv6.
Consistency Check
Layer3 Subinterface
Router Advertisement (cont)
Select if you want the firewall to verify that RAs sent from other routers are advertising consistent information on the link. The firewall logs any inconsistencies in a system log; the type is
Include DNS information in Router Advertisement
Layer3 Subinterface
DNS Support
Select for the firewall to send DNS information in NDP router advertisements from this IPv6 Ethernet subinterface. The other DNS Support fields in this table are visible only after you select this option.
one or more recursive DNS (RDNS) server addresses for the firewall to send in NDP router advertisements from this IPv6 Ethernet interface. RDNS servers send a series of DNS look up requests to root DNS and authoritative DNS servers to ultimately provide an IP address to the DNS client.
You can configure a maximum of 8 RDNS Servers that the firewall sends—in order listed from top to bottom—in an NDP router advertisement to the recipient, which then uses them in the same order. Select a server and
Move Up
Move Down
to change the order of the servers or
a server from the list when you no longer need it.
Enter maximum number of seconds after the IPv6 DNS client receives the router advertisement before the client can use an RDNS server to resolve domain names (range is Max Interval (sec) to twice Max Interval; default is 1,200).
one or more domain names (suffixes) for the DNS search list (DNSSL). Maximum length is 255 bytes.
A DNS search list is a list of domain suffixes that a DNS client router appends (one at a time) to an unqualified domain name before it enters the name into a DNS query, thereby using a fully qualified domain name in the query. For example, if a DNS client tries to submit a DNS query for the name “quality” without a suffix, the router appends a period and the first DNS suffix from the DNS search list to the name and transmits the DNS query. If the first DNS suffix on the list is “company.com”, the resulting query from the router is for the fully qualified domain name “quality.company.com”.
If the DNS query fails, the router appends the second DNS suffix from the list to the unqualified name and transmits a new DNS query. The router uses the DNS suffixes until a DNS lookup is successful (ignores the remaining suffixes) or until the router has tried all of suffixes on the list.
Configure the firewall with the suffixes that you want to provide to the DNS client router in a Neighbor Discovery DNSSL option; the DNS client receiving the DNSSL option uses the suffixes in its unqualified DNS queries.
You can configure a maximum of 8 domain names (suffixes) for a DNS search list option that the firewall sends—in order listed from top to bottom— in an NDP router advertisement to the recipient, which uses them in the same order. Select a suffix and
Move Up
Move Down
to change the order or
a suffix when you no longer need it.
Enter the maximum number of seconds after the IPv6 DNS client receives the router advertisement that it can use a domain name (suffix) on the DNS search list (range is the value of Max Interval (sec) to twice the Max Interval; default is 1,200).

Recommended For You