Reverse shell
Table of Contents
Self.Hosted 22.06 (EoL)
Expand all | Collapse all
-
- Getting started
- System Requirements
- Prisma Cloud container images
- Onebox
- Kubernetes
- OpenShift v4
- Console on Fargate
- Amazon ECS
- Alibaba Cloud Container Service for Kubernetes (ACK)
- Azure Kubernetes Service (AKS)
- Amazon Elastic Kubernetes Service (EKS)
- Google Kubernetes Engine (GKE)
- Google Kubernetes Engine (GKE) Autopilot
- IBM Kubernetes Service (IKS)
- Windows
- Defender types
- Cluster Context
-
- Install a single Container Defender
- Automatically Install Container Defender in a Cluster
- App-Embedded Defender
- App-Embedded Defender for Fargate
- Default setting for App-Embedded Defender file system protection
- VMware Tanzu Application Service (TAS) Defender
- Serverless Defender
- Serverless Defender as a Lambda layer
- Auto-defend serverless functions
- Install a single Host Defender
- Auto-defend hosts
- Deploy Prisma Cloud Defender from the GCP Marketplace
- Decommission Defenders
- Redeploy Defenders
- Uninstall Defenders
-
- Rule ordering and pattern matching
- Backup and restore
- Custom feeds
- Configuring Prisma Cloud proxy settings
- Prisma Cloud Compute certificates
- Configure Agentless Scanning
- Agentless Scanning Modes
- Configure scanning
- User certificate validity period
- Enable HTTP access to Console
- Set different paths for Defender and Console (with DaemonSets)
- Authenticate to Console with certificates
- Configure custom certs from a predefined directory
- Customize terminal output
- Collections
- Tags
- Logon settings
- Reconfigure Prisma Cloud
- Subject Alternative Names
- WildFire Settings
- Log Scrubbing
- Clustered-DB
- Permissions by feature
-
- Logging into Prisma Cloud
- Integrating with an IdP
- Integrate with Active Directory
- Integrate with OpenLDAP
- Integrate Prisma Cloud with Open ID Connect
- Integrate with Okta via SAML 2.0 federation
- Integrate Google G Suite via SAML 2.0 federation
- Integrate with Azure Active Directory via SAML 2.0 federation
- Integrate with PingFederate via SAML 2.0 federation
- Integrate with Windows Server 2016 & 2012r2 Active Directory Federation Services (ADFS) via SAML 2.0 federation
- Integrate Prisma Cloud with GitHub
- Integrate Prisma Cloud with OpenShift
- Non-default UPN suffixes
- Compute user roles
- Assign roles
- Credentials store
- Cloud accounts
-
- Prisma Cloud vulnerability feed
- Vulnerability Explorer
- Vulnerability management rules
- Search CVEs
- Scan reports
- Scanning procedure
- Customize image scanning
- Configure Registry Scans
-
- Scan Images in Sonatype Nexus Registry
- Scan images in Alibaba Cloud Container Registry
- Scan images in Amazon EC2 Container Registry (ECR)
- Scan images in Azure Container Registry (ACR)
- Scan images in Docker Registry v2 (including Docker Hub)
- Scan images in Google Artifact Registry
- Scan images in Google Container Registry (GCR)
- Scan images in Harbor Registry
- Scan images in IBM Cloud Container Registry
- Scan images in Artifactory Docker Registry
- Scan images in OpenShift integrated Docker registry
- Trigger registry scans with Webhooks
- Base images
- Configure VM image scanning
- Configure code repository scanning
- Agentless scanning
- Malware scanning
- Vulnerability risk tree
- Vulnerabilities Detection
- CVSS scoring
- Windows container image scanning
- Serverless function scanning
- VMware Tanzu blobstore scanning
- Scan App-Embedded workloads
- Troubleshoot vulnerability detection
-
- Compliance Explorer
- Enforce compliance checks
- CIS Benchmarks
- Prisma Cloud Labs compliance checks
- Serverless functions compliance checks
- Windows compliance checks
- DISA STIG compliance checks
- Custom compliance checks
- Trusted images
- Host scanning
- VM image scanning
- App-Embedded scanning
- Detect secrets
- Cloud discovery
- OSS license management
- API
End-of-Life (EoL)
Reverse shell
Reverse shell is a method used by attackers for gaining access to a victim’s system.
A reverse shell is a established by a malicious payload executed on a targeted resource which connects to a pre-configured host and provides an attacker the means to execute interactive shell commands through that connection.
Investigation
In the following incident, you can see that a reverse shell was used to provide a remote user interactive shell on this host, potentially enabling an attacker to execute any command that the user used to launch the reverse shell is authorized to execute.

The first step in an investigation is to validate that the reverse shell represent a bona fide security incident.
While it is unlikely that a legitimate application or user is using a reverse shell for legitimate reasons, the first step should be validation that the reported application and user have not used reverse shell intentionally.
In this case it appears that a user used nc in order to allow a remote shell via ssh. "View forensics data" can be used to gain better understanding on what was done via the shell and understand whether this was for legitimate activity.
Having determined that this is a bona fide incident, the next steps focus on determining how an attacker managed to execute the process that allowed them to initiate the remote shell.
Check Incident Explorer for additional incidents.
Review additional runtime audits for the source to see if there are other clues.
Review access to the resources and ensure that the affected account(s) weren’t subsequently used for further access to systems and data.
Mitigation
A full mitigation strategy for this incident begins with resolving the issues that allowed the attacker to execute the process that initiated the remote shell.
Ensure that compliance benchmarks and patches are appropriately applied to the affected resources. For example, an unpatched critical vulnerability can be abused to execute a process that allows for the remote shell to be triggered remotely.