Automated deployment
Table of Contents
Self.Hosted 31.xx
Expand all | Collapse all
-
- Getting started
- System Requirements
- Cluster Context
-
- Prisma Cloud Container Images
- Kubernetes
- Deploy the Prisma Cloud Console on Amazon ECS
- Console on Fargate
- Onebox
- Alibaba Cloud Container Service for Kubernetes (ACK)
- Azure Container Service (ACS) with Kubernetes
- Azure Kubernetes Service (AKS)
- Amazon Elastic Kubernetes Service (EKS)
- IBM Kubernetes Service (IKS)
- OpenShift v4
-
- Defender Types
- Manage your Defenders
- Redeploy Defenders
- Uninstall Defenders
-
- Deploy Orchestrator Defenders on Amazon ECS
- Automatically Install Container Defender in a Cluster
- Deploy Prisma Cloud Defender from the GCP Marketplace
- Deploy Defenders as DaemonSets
- VMware Tanzu Application Service (TAS) Defender
- Deploy Defender on Google Kubernetes Engine (GKE)
- Google Kubernetes Engine (GKE) Autopilot
- Deploy Defender on OpenShift v4
-
- Agentless Scanning Modes
-
- Onboard AWS Accounts for Agentless Scanning
- Onboard Azure Accounts for Agentless Scanning
- Configure Agentless Scanning for Azure
- Onboard GCP Accounts for Agentless Scanning
- Configure Agentless Scanning for GCP
- Onboard Oracle Cloud Infrastructure (OCI) Accounts for Agentless Scanning
- Configure Agentless Scanning for Oracle Cloud Infrastructure (OCI)
- Agentless Scanning Results
-
- Rule ordering and pattern matching
- Backup and Restore
- Custom feeds
- Configuring Prisma Cloud proxy settings
- Prisma Cloud Compute certificates
- Configure scanning
- User certificate validity period
- Enable HTTP access to Console
- Set different paths for Defender and Console (with DaemonSets)
- Authenticate to Console with Certificates
- Configure custom certs from a predefined directory
- Customize terminal output
- Collections
- Tags
- Logon settings
- Reconfigure Prisma Cloud
- Subject Alternative Names
- WildFire Settings
- Log Scrubbing
- Clustered-DB
- Permissions by feature
-
- Logging into Prisma Cloud
- Integrating with an IdP
- Integrate with Active Directory
- Integrate with OpenLDAP
- Integrate Prisma Cloud with Open ID Connect
- Integrate with Okta via SAML 2.0 federation
- Integrate Google G Suite via SAML 2.0 federation
- Integrate with Azure Active Directory via SAML 2.0 federation
- Integrate with PingFederate via SAML 2.0 federation
- Integrate with Windows Server 2016 & 2012r2 Active Directory Federation Services (ADFS) via SAML 2.0 federation
- Integrate Prisma Cloud with GitHub
- Integrate Prisma Cloud with OpenShift
- Non-default UPN suffixes
- Compute user roles
- Assign roles
-
- Prisma Cloud Vulnerability Feed
- Scanning Procedure
- Vulnerability Management Policies
- Vulnerability Scan Reports
- Scan Images for Custom Vulnerabilities
- Base images
- Vulnerability Explorer
- CVSS scoring
- CVE Viewer
-
- Configure Registry Scans
- Scan Images in Alibaba Cloud Container Registry
- Scan Images in Amazon Elastic Container Registry (ECR)
- Scan images in Azure Container Registry (ACR)
- Scan Images in Docker Registry v2 (including Docker Hub)
- Scan Images in GitLab Container Registry
- Scan images in Google Artifact Registry
- Scan Images in Google Container Registry (GCR)
- Scan Images in Harbor Registry
- Scan Images in IBM Cloud Container Registry
- Scan Images in JFrog Artifactory Docker Registry
- Scan Images in Sonatype Nexus Registry
- Scan images in OpenShift integrated Docker registry
- Scan Images in CoreOS Quay Registry
- Trigger Registry Scans with Webhooks
- Configure VM image scanning
- Configure code repository scanning
- Malware scanning
- Windows container image scanning
- Serverless Functions Scanning
- VMware Tanzu Blobstore Scanning
- Scan App-Embedded workloads
- Troubleshoot Vulnerability Detection
-
- Compliance Explorer
- Enforce compliance checks
- CIS Benchmarks
- Prisma Cloud Labs compliance checks
- Serverless functions compliance checks
- Windows compliance checks
- DISA STIG compliance checks
- Custom compliance checks
- Trusted images
- Host scanning
- VM image scanning
- App-Embedded scanning
- Detect secrets
- OSS license management
-
- Alert Mechanism
- AWS Security Hub
- Cortex XDR alerts
- Cortex XSOAR alerts
- Email alerts
- Google Cloud Pub/Sub
- Google Cloud Security Command Center
- IBM Cloud Security Advisor
- JIRA Alerts
- PagerDuty alerts
- ServiceNow alerts for Security Incident Response
- ServiceNow alerts for Vulnerability Response
- Slack Alerts
- Splunk Alerts
- Webhook alerts
- API
Automated deployment
The following is an example of Infrastructure as Code (IaC) for the automated deployment of a Console and Defenders within a Kubernetes cluster using an Ansible playbook.
This requires a docker host, Prisma Cloud Compute license and kubectl administrative access to the Kubernetes cluster.
The Ansible playbook must run on a host that is able to route to the Console service’s ClusterIP address to perform the required API calls to configure the Console.
Use of this Ansible playbook does not imply any rights to Palo Alto Networks products and/or services.
Requirements
This sample IaC deployment runs on a unix based host with the following requirements:
- kubectl access to Kubernetes cluster with permissions to deploy Prisma Cloud Compute.
- Ability to pull images from registry-auth.twistlock.com
- K8s-Console-Defender-deployment-ansible.yaml Ansible playbook
Process

Ansible playbook
Pull the Ansible playbook from here.
Update the variables in the vars: section in K8s-Console-Defender-deployment-ansible.yaml.
- twistlock_registry_token: <license_token>
- twistlock_license: <license>
- twistlock_install_version: <version_to_deploy, e.g. "21_04_421">
- user: <first_admin_username>
- password: <first_admin_password>
- storage_class: <k8s_storage_class_for_dynamic_persistent_volume>
- namespace: <namespace>
Execution
On the unix host, sudo to root and run the command
ansible-playbook K8s-Console-Defender-deployment-ansible.yaml
The supporting files will be written to the /root/twistlock directory.
Post execution
Once the playbook has successfully completed, establish communications to the twistlock-console service’s management-port-https port (default 8083/TCP) using a Kubernetes LoadBalancer or your organization’s approved cluster ingress technology.