Supported Model Formats
Focus
Focus
Prisma AIRS

Supported Model Formats

Table of Contents

Supported Model Formats

Prisma AIRS AI Model Security supports scanning and security checks across various AI and ML model formats.
Where Can I Use This?What Do I Need?
  • Prisma AIRS (Model Security)
  • Prisma AIRS Model Security License
AI Model Security checks are supported on the following formats:
  1. CNTK Models: Models saved in Microsoft Cognitive Toolkit format.
  2. Flax Models: Models created with Flax, a neural network library for JAX.
  3. GGUF Models: General-purpose model format using GGUF.
  4. Keras Models:
    • Legacy Keras Models: Older Keras models, often saved with HDF5.
    • Keras 3 Models: Newer Keras models using the latest Keras version.
    • Keras Pickle Models: Keras models saved with Python pickle.
    • Keras H5 Models: Models in HDF5 format, compatible with legacy and newer versions.
    • Keras Weights: Separate files storing only model weights.
    • Keras JSON: Models saved in JSON format for architecture storage.
    • Keras Metadata: Auxiliary files that store metadata for Keras models.
  5. KModel: KModel files specific to Keras.
  6. LightGBM Models: Gradient boosting models using LightGBM.
  7. MS Lite Models: Microsoft Lite format for lightweight models.
  8. MXNet Models: Models saved in Apache MXNet format.
  9. Numpy Models:
    • Numpy Array Files: Arrays saved in .npy format.
    • Numpy Zip Files: Arrays compressed in .npz format.
    • Numpy Pickle Files: Arrays serialized with pickle.
  10. OM Models: Models in Huawei Ascend's OM format.
  11. ONNX Models: Models saved in Open Neural Network Exchange format.
  12. OpenVINO Models:
    • OpenVINO Binary Files: Compiled binary files for OpenVINO.
    • OpenVINO XML Files: XML files storing OpenVINO model metadata.
  13. Pickle Files: Models serialized using Python's pickle.
  14. PyTorch Models:
    • Various PyTorch Versions: Models saved with different PyTorch versions.
    • TorchScript: PyTorch's format for serializing models.
    • PyTorch Archives: Archived files containing serialized models.
  15. RKNN Models: Models saved in Rockchip Neural Network (RKNN) format.
  16. Safetensors:
    • Safetensors Models: Models saved using safetensors format for secure tensor storage.
    • Safetensors Index: Index files for safetensors.
  17. SKLearn Models: Scikit-learn models serialized for deployment.
  18. TensorRT Models: NVIDIA's TensorRT models optimized for inference.
  19. TensorFlow Models:
    • SavedModel: TensorFlow's standard saved model format.
    • TFHub: Models from TensorFlow Hub.
    • MetaGraph: TensorFlow's MetaGraph format for exporting graphs.
    • TFLite: Lightweight format for mobile and embedded devices.
    • TFJS: TensorFlow.js format for models running in the browser.
  20. Torch Models: General format for PyTorch models.
  21. JSON Files: JSON-based configurations or model descriptions.