Next-Generation Firewall
About Auto VPN
Table of Contents
Expand All
|
Collapse All
Next-Generation Firewall Docs
-
Cloud Management of NGFWs
- PAN-OS 11.1 & Later
- PAN-OS 11.0 (EoL)
- PAN-OS 10.2
- PAN-OS 10.1
- PAN-OS 10.0 (EoL)
- PAN-OS 9.1 (EoL)
- Cloud Management of NGFWs
-
-
-
- Configure a Filter Access List
- Configure a Filter Prefix List
- Configure a Filter Community List
- Configure a BGP Filter Route Map
- Configure a Filter Route Maps Redistribution List
- Configure a Filter AS Path Access List
- Configure an Address Family Profile
- Configure a BGP Authentication Profile
- Configure a BGP Redistribution Profile
- Configure a BGP Filtering Profile
- Configure an OSPF Authentication Profile
- Configure a Logical Router
- Configure a Static Route
- Configure OSPF
- Configure BGP
- Configure an IPSec Tunnel
- Web Proxy
- Cheat Sheet: GlobalProtect for Cloud Management of NGFWs
-
PAN-OS 11.1 & Later
- PAN-OS 11.1 & Later
- PAN-OS 11.0 (EoL)
- PAN-OS 10.2
- PAN-OS 10.1
-
- Tap Interfaces
-
- Layer 2 and Layer 3 Packets over a Virtual Wire
- Port Speeds of Virtual Wire Interfaces
- LLDP over a Virtual Wire
- Aggregated Interfaces for a Virtual Wire
- Virtual Wire Support of High Availability
- Zone Protection for a Virtual Wire Interface
- VLAN-Tagged Traffic
- Virtual Wire Subinterfaces
- Configure Virtual Wires
- Configure a PPPoE Client on a Subinterface
- Configure an IPv6 PPPoE Client
- Configure an Aggregate Interface Group
- Configure Bonjour Reflector for Network Segmentation
- Use Interface Management Profiles to Restrict Access
-
- DHCP Overview
- Firewall as a DHCP Server and Client
- Firewall as a DHCPv6 Client
- DHCP Messages
- Dynamic IPv6 Addressing on the Management Interface
- Configure an Interface as a DHCP Server
- Configure an Interface as a DHCPv4 Client
- Configure an Interface as a DHCPv6 Client with Prefix Delegation
- Configure the Management Interface as a DHCP Client
- Configure the Management Interface for Dynamic IPv6 Address Assignment
- Configure an Interface as a DHCP Relay Agent
-
- DNS Overview
- DNS Proxy Object
- DNS Server Profile
- Multi-Tenant DNS Deployments
- Configure a DNS Proxy Object
- Configure a DNS Server Profile
- Use Case 1: Firewall Requires DNS Resolution
- Use Case 2: ISP Tenant Uses DNS Proxy to Handle DNS Resolution for Security Policies, Reporting, and Services within its Virtual System
- Use Case 3: Firewall Acts as DNS Proxy Between Client and Server
- DNS Proxy Rule and FQDN Matching
-
- NAT Rule Capacities
- Dynamic IP and Port NAT Oversubscription
- Dataplane NAT Memory Statistics
-
- Translate Internal Client IP Addresses to Your Public IP Address (Source DIPP NAT)
- Create a Source NAT Rule with Persistent DIPP
- PAN-OS
- Strata Cloud Manager
- Enable Clients on the Internal Network to Access your Public Servers (Destination U-Turn NAT)
- Enable Bi-Directional Address Translation for Your Public-Facing Servers (Static Source NAT)
- Configure Destination NAT with DNS Rewrite
- Configure Destination NAT Using Dynamic IP Addresses
- Modify the Oversubscription Rate for DIPP NAT
- Reserve Dynamic IP NAT Addresses
- Disable NAT for a Specific Host or Interface
-
- Network Packet Broker Overview
- How Network Packet Broker Works
- Prepare to Deploy Network Packet Broker
- Configure Transparent Bridge Security Chains
- Configure Routed Layer 3 Security Chains
- Network Packet Broker HA Support
- User Interface Changes for Network Packet Broker
- Limitations of Network Packet Broker
- Troubleshoot Network Packet Broker
-
- Enable Advanced Routing
- Logical Router Overview
- Configure a Logical Router
- Create a Static Route
- Configure BGP on an Advanced Routing Engine
- Create BGP Routing Profiles
- Create Filters for the Advanced Routing Engine
- Configure OSPFv2 on an Advanced Routing Engine
- Create OSPF Routing Profiles
- Configure OSPFv3 on an Advanced Routing Engine
- Create OSPFv3 Routing Profiles
- Configure RIPv2 on an Advanced Routing Engine
- Create RIPv2 Routing Profiles
- Create BFD Profiles
- Configure IPv4 Multicast
- Configure MSDP
- Create Multicast Routing Profiles
- Create an IPv4 MRoute
-
-
PAN-OS 11.2
- PAN-OS 11.2
- PAN-OS 11.1
- PAN-OS 11.0 (EoL)
- PAN-OS 10.2
- PAN-OS 10.1
- PAN-OS 10.0 (EoL)
- PAN-OS 9.1 (EoL)
- PAN-OS 9.0 (EoL)
- PAN-OS 8.1 (EoL)
- Cloud Management and AIOps for NGFW
About Auto VPN
Learn more about Auto VPN on Strata Cloud Manager.
Contact your account team to enable Cloud Management for NGFWs using Strata
Cloud Manager.
Where Can I Use This? | What Do I Need? |
---|---|
|
One of these:
|
Auto VPN enables you to create a VPN cluster to connect multiple local area networks
(LANs). When you create a VPN cluster, you must specify which firewall acts as the
gateway device that facilitates communication between the branch firewalls and
automatically creates secure connections between the gateway and branch devices.
Auto VPN supports hub-and-spoke topology only. Auto VPN does not support mesh
topology between gateway devices.
After you create the VPN cluster, the firewalls automatically set up a route-based VPN
tunnels and makes routing decisions based on the Layer 3 Ethernet interface IP
addresses. If traffic is routed to a specific destination through a VPN tunnel, then it
is handled as VPN traffic. These tunnels are created only between the gateway device and
the branch devices. Tunnels are not created between any branch devices.
The VPN is secured using Internet Protocol Security (IPSec); a set of protocols used to
set up a secure tunnel for VPN traffic. The information in the TCP/IP packet is secured.
The IP packet (header and payload) is embedded in another Internet Protocol payload, and
a new header is applied and then sent through the IPSec tunnel. The source IP address in
the new header is that of the local VPN peer and the destination IP address is that of
the VPN peer on the far end of the tunnel. When the packet reaches the remote VPN peer
(the firewall at the far end of the tunnel), the outer header is removed and the
original packet is sent to its destination.
To set up the VPN tunnel, the branch devices need to be authenticated. After successful
authentication, the branch devices negotiate the encryption mechanism and algorithms to
secure the communication. The Internet Key Exchange (IKE) process is used to
authenticate the VPN branch devices and IPSec security associations (SAs) are defined at
each end of the tunnel to secure the VPN communication. IKE uses pre-shared keys to set
up the SAs for the IPSec tunnel. The SAs specify all of the required parameters for
secure transmission— including the security parameter index (SPI), security protocol,
cryptographic keys, and the destination IP address—encryption, data authentication, data
integrity, and endpoint authentication. IPv4